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SIMPLE LOGICS FOR BASIC ALGEBRAS

Abstract

An MV-algebra is an algebra (A,⊕,¬, 0), where (A,⊕, 0) is a commutative monoid

and ¬ is an idempotent operation on A satisfying also some additional axioms.

Basic algebras are similar algebras that can roughly be characterised as non-

associative (hence, also non-commutative) generalizations of MV-algebras. Basic

algebras and commutative basic algebras provide an equivalent algebraic seman-

tics in the sense of Blok and Pigozzi for two recent logical systems. Both are

Hilbert-style systems, with implication and negation as the primitive connectives.

We present a considerably simpler logic, LB , for basic algebras, where implica-

tion and falsum are taken as primitives. We also consider some subvarieties of

basic algebras known in the literature, discuss classes of implicational algebras

term-equivalent to each of these varieties, and construct axiomatic extensions of

LB for which these classes serve as equivalent algebraic semantics.

1. Introduction

A basic algebra is an algebra (A,⊕,¬, 0) of type (2,1,0) satisfying the iden-
tities

B1: x⊕ 0 = x,

B2: ¬¬x = x,

B3: ¬(¬x⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x,

B4: ¬(¬(¬(x⊕ y) ⊕ y) ⊕ z) ⊕ (x⊕ z) = ¬0,

see [7, 8]; the initial set of axioms (containing six equations and an addi-
tional constant 1) turned out to be redundant and was shortened in [9].
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Basic algebras were introduced as a common generalization of orthomodu-
lar lattices and MV-algebras. A basic algebra is an MV-algebra if and only
if it is associative, i.e., the operation ⊕ is associative (Theorem 8.5.10 in
[7]), and (term-equivalent to) an orthomodular lattice if and only if it sat-
isfies identity B6 which will be introduced in Section 4. One more variety
of basic algebras which has been intensively studied is that of commuta-
tive basic algebras, i.e., those where the operation ⊕ is commutative. In
particular, every MV-algebra is a commutative basic algebra. For more
information on basic algebras, including applications, see the survey pa-
pers [3, 5, 10]. We denote the variety of all basic algebras by B, and its
subvariety of commutative basic algebras, by CB.

In [1], a non-associative version LCBA of  Lukasievicz logic was pro-
posed; it was also shown there that the class of commutative basic algebras
provides for LCBA an equivalent algebraic semantics in the sense of [2]. An-
other system LB , for general basic algebras, was presented in [4]. Both are
Hilbert-style systems based on the propositional language with connectives
→ (implication) and ¬ (negation). The logic LCBA has five axiom schemes
and two rules; LB has even seven axiom schemes and four rules. In both
papers, the main result states that the variety under consideration (i.e.,
CB or B) induces an algebraic semantics for the corresponding logic, and
is proved by checking that the class of implicational algebras determined by
the logic is term-equivalent to the respective variety. We point out in this
connection a small gap in the proof of Theorem 2 in [1]: it is demonstrated
there, in particular, that the variety of basic algebras is interpretable in the
constructed equivalent algebraic semantics K∗ for LCBA (which therefore
is a class of (→,¬)-algebras), while these are commutative basic algebras
which should be so interpreted.

The two logical systems are not explicitly related with each other. Our
aim in this paper is to improve the situation: we present another (simpler)
logical system LB , with → and 0 (falsum) as the primitives, for the variety
B of basic algebras; the system is then extended to a logic for CB adding
an appropriate axiom scheme. Moreover, we obtain in the same way log-
ics for several other particular subvarieties of B. Replacement of negation
by falsum makes possible to relate the implicational algebras determined
by our logics to various appropriate negationless implicational algebras al-
ready known in the literature; this enables shortening of several proofs. In
particular, the equivalent algebraic semantics of LB turns out to be a class
of algebras already knowingly equivalent to B.
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The underlying language of all logical systems considered below is the
set of propositional formulas Frm, built from variables by a binary con-
nective → and a nullary connective 0. Other logical connectives can be
introduced by the following definitions:

¬φ := φ→ 0, φ ∨ ψ := (φ→ ψ) → ψ, φ&ψ := ¬(¬φ ∨ ¬ψ);

however, they will not be used. The logic LB is determined by the axiom
schemes

A1: φ→ (ψ → φ),

A2: (φ→ ((φ→ ψ) → ψ),

A3: ((φ→ ψ) → ψ) → ((ψ → φ) → φ),

A4: 0 → φ,

and the rules

R1:
φ, φ→ ψ

ψ
,

R2:
φ→ ψ

(ψ → χ) → (φ→ χ)
,

R3:
φ→ ψ, ψ → φ

(χ→ φ) → (χ→ ψ)
.

We describe in the next section a class (in fact, a variety) IB0 of (→, 0)-
algebras which is term-equivalent to the variety of basic algebras, and show
in Section 3 that the logic LB is algebraizable and IB0 is its equivalent
algebraic semantics. In Section 4, we discuss several known subvarieties of
B (in particular, CB) and construct appropriate axiomatic extensions of
LB for what they serve as equivalent semantics.

2. Some related classes of implicational algebras

It was proved in [8] that the class of basic algebras is term-equivalent to a
variety of algebras (A,→, 0, 1) of type (2, 1, 1), where → is interpreted as
an implication-like operation. The corresponding operation definitions are
(see Theorem 3.10 and Definition 3.2 of [8]):

x→ y := ¬x⊕y, 1 := ¬0 and x⊕y := (x→ 0) → y, ¬x := x→ 0. (2.1)
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Later, the equational axioms of this variety were simplified and the constant
1 was shown to be definable in terms of implication:

I0: x→ x = 1.

The →-reducts of algebras from the variety were named implication basic
algebras and characterised by the following axioms:

I1: (x→ x) → x = x,

I2: (x→ y) → y = (y → x) → x,

I3: (((x→ y) → y) → z) → (x→ z) = x→ x.

[11, Definition 1]; see also Definition 7.1 in [5]. Let us denote here the
variety of these algebras by IB. Owing to I0, we may consider them, where
convenient, also as (→, 1)-algebras.

The relation ≤ on an IB-algebra A defined by

x ≤ y iff x→ y = 1 (2.2)

is a partial order on A. Thus, an element 0 is the least element in A if and
only if the following holds for any x:

I4: 0 → x = 1;

in particular, such an element is unique when it exists. We denote by IB0

the class of bounded IB-algebras (A,→, 0) (they were called implication
basic algebras with the least element in [11, 5]). It is in fact a variety,
characterised, besides I1–I3, by a version 0 → x = x→ x of I4. Of course,
IB0-algebras may be treated also as algebras in the signature (→, 0, 1)
satisfying I0–I4. As mentioned above, the variety IB0 is term-equivalent
to that of basic algebras (cf. [11, Theorem 6]). Another system of three
equations for IB0 can be obtained, using (2.1), directly from B1–B4 (notice
that the translations of B1 and B2 are the same); it consists of I2, a variant
of I3 and

I5: (x→ 0) → 0) = x;

see, e.g., Section 3 in [5] (or [6], where further reductions are considered).
Thus, the class IB0 is characterised by equational axioms. For our

purposes in the next section, ≤-based axioms, i.e., equations of the form
φ = 1 and quasi-equations involving only equalities of this kind will be
more useful. It is remarked in [14] (pp. 8 and 14) that there is a close
connection between implication basic algebras and commutative wBCK*-
algebras in the sense of [12, 16], i.e., order duals of commutative weak
BCK-algebras of [14, 16]. A wBCK*-algebra was defined in [12] to be an
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algebra A := (A,→, 1) such that A is a poset with the greatest element 1
and → is a binary operation on A satisfying (2.2) and a weakened form of
the exchange law:

if x ≤ y → z, then y ≤ x→ z. (2.3)

A wBCK* algebra is said to be commutative if it satisfies the identity I2.
The class of commutative wBCK*-algebras is a variety, which, according
to [14, Theorem 3.4] is characterised by axioms I0, I2 and the following
versions of I1 and I3:

I1’: 1 → x = x,

I3’: (((y → x) → x) → z) → (x→ z) = 1,

provided the order is defined as in (2.2); [14, Theorem 3.5] shows that
the variety is actually three-based. Evidently, this variety coincides with
the variety of implication basic algebras considered as algebras (A,→, 1)
satisfying I0.

A bounded wBCK*-algebra is one possessing the least element 0. Such
a wBCK*-algebra A always satisfies I4 and may therefore be considered
also as an algebra (A,→, 0, 1). Then A may be regarded as IB0-algebra,
and conversely. We thus have arrived at the following observation.

Proposition 1. The classes (varieties) of IB0-algebras and bounded com-
mutative wBCK*-algebras coincide.

3. The logic LB

We first adapt to LB the general concepts of equivalent algebraic semantics
and algebraizable logic (Definitions 2.8 and 2.10 in [2]). It will be conve-
nient, when dealing with algebras of kind (A,→, 0), to consider formulas
from Frm also as terms and build from them equations φ = ψ.

Given a class K of such algebras, the K-consequence relation |=K

(between sets of equations and equations) is defined in the usual way (cf.
[2]): if Γ is a set of equations, then

Γ |=K φ = ψ if and only if the equation φ = ψ holds under
any interpretation in an algebra from K whenever all equations
from Γ hold under the same interpretation.

In an algebraic context, we also write 1 for the term 0 → 0 and φ ≤ ψ for
the equation φ→ ψ = 1, where φ and ψ are arbitrary terms. We thus may
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also consider 1 as a symbol for the constant 0 → 0 in an algebra A, and ≤

as a symbol for the binary relation defined on A by the family of equations
φ→ ψ = 1.

Since only one fixed defining equation p = 1 and only one fixed set
{p → q, q → p} of equivalence formulas will be necessary here, we do
not mention them explicitly in the subsequent specialisation of the general
definition [2, Definition 2.8].

A class K of algebras (A,→, 0) is said to be an equivalent alge-
braic semantics for LB if, for all Γ ⊆ Frm and φ, ψ ∈ Frm,

Γ ⊢ φ if and only if {ψ = 1: ψ ∈ Γ} |=K φ = 1, (3.1)

φ→ ψ = 1 = ψ → φ |=K φ = ψ and conversely. (3.2)

The logic LB is said to be algebraizable if it admits an equivalent algebraic
semantics.

Remark 1. Like any algebraizable logical system, LB may have vari-
ous equivalent algebraic semantics. By Corollaries 2.15 and 2.11 of [2],
they generate the same quasivariety, which is another equivalent algebraic
semantics for LB . If classes K and K ′ are both equivalent algebraic se-
mantics, then they, strictly speaking, may have different defining equations
and different equivalence formulas. However, both sets of equivalence for-
mulas are deductively equivalent in LB , and every defining equation of one
semantics is both a K-consequence and a K ′-consequence of the set of all
defining equations of the other semantics (Corollary 2.15 in [2]). There-
fore, the formally restricted notion of algebraizability (since related to the
defining equation and equivalence formulas fixed above) is still adequate.

Lemma 2. The logic LB is algebraizable.

Proof: According to [2, Theorem 4.7], the particular logical system LB is
algebraizable provided the following statements hold in it for all formulas
φ, ψ, χ:

(i) ⊢ φ→ φ,

(ii) φ→ ψ ⊢ φ→ ψ,

(iii) φ→ ψ,ψ → χ ⊢ φ→ χ,

(iv-1) φ→ ψ,ψ → φ, φ′ → ψ′, ψ′
→ φ′ ⊢ (φ→ φ′) → (ψ → ψ′),

(iv-2) φ→ ψ,ψ → φ, φ′ → ψ′, ψ′
→ φ′ ⊢ (ψ → ψ′) → (φ→ φ′),
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(v-1) φ ⊢ φ→ (0 → 0),

(v-2) φ ⊢ (0 → 0) → φ,

(v-3) (0 → 0) → φ ⊢ φ.

We prove that this is indeed the case.

(ii) Trivial.

(iii) By R1 from R2.

(i) First observe that R2, A2 and (iii) yield the derivation

φ→(ψ→χ), ((ψ→χ)→χ)→(φ→χ), ψ→((ψ→χ)→χ), ψ→(φ→χ)

of a sequent
φ→ (ψ → χ) ⊢ ψ → (φ→ χ). (3.3)

Now A4, A1, (3.3) and R1 yield a derivation for φ→ φ:

0 → 0, φ→ ((0 → 0) → φ), (0 → 0) → (φ→ φ), φ→ φ.

(iv-1) We have:

ψ → φ ⊢ (φ→ φ′) → (ψ → φ′) by R2,
φ′ → ψ′, ψ′

→ φ′ ⊢ (ψ → φ′) → (ψ → ψ′) by R3,
(φ→ φ′) → (ψ → φ′), (ψ → φ′) → (ψ → ψ′) ⊢

(φ→ φ′) → (ψ → ψ′) by (iii).
From these sequents, (iv-1) easily follows.

(iv-2) This is a variant of (iv-1).

(v-1) A4, A1 and R1 give us a required derivation

φ, 0 → 0, (0 → 0) → (φ→ (0 → 0)), φ→ (0 → 0).

(v-2) By A1 and R1.

(v-3) By (i) and R1.

We now state the main result of the paper.

Theorem 3. The variety IB0 is an equivalent algebraic semantics for LB.

Proof: It follows from [2, Theorem 2.17] and Lemma 2 that the class K of
algebras (A,→, 0) defined by the following equations and quasi-equations
is an equivalent algebraic semantics for LB :

(i-1) x ≤ (y → x),

(i-2) x ≤ (x→ y) → y,
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(i-3) (x→ y) → y ≤ (y → x) → x,

(i-4) 0 ≤ x,

(ii) x ≤ x,

(iii-1) if x = 1 and x ≤ y, then y = 1,

(iii-2) if x ≤ y, then y → z ≤ x→ z,

(iii-3) if x ≤ y and y ≤ x, then z → x ≤ z → y,

(iv) if x ≤ y and y ≤ x, then x = y.

We have to prove that K= IB0.
At first, notice that, due to Lemma 2(iii), (3.3) and (3.1), the following

quasi-equations also hold in K:

(v-1) if x ≤ y and y ≤ z, then x ≤ z,

(v-2) if x ≤ y → z, then y ≤ x→ z (this is the law (2.3)).

Now, (ii), (v-1), (iv) and (i-4) show that the relation ≤ on an algebra A

from K is an order with the least element 0, while (iii-1) says that 1 is
its maximal element. Actually, (v-2) and (i-1) entail y ≤ 0 → 0, which
means that 1 is the greatest element in A. Therefore, all algebras in K are
bounded posets, and (iii-3) becomes trivially true.

Further, (v-2) and the equivalence (2.2), which immediately follows
from the above conventions concerning 1 and ≤, show that members of
K are even bounded wBCK*-algebras. It follows from (i-3) that wBCK*-
algebras in K are commutative. Thus, K ⊆ IB0 by Proposition 1.

Conversely, every IB0-algebra belongs to K. To see this, assume that
A is such an algebra. By Proposition 1, then A is a bounded commutative
wBCK*-algebra. This implies that A satisfies (2.2) and, hence, also (i-1),
(i-3), (i-4), (ii), (iii-1), (iii-3) and (iv). Moreover, it is easily seen that both
(i-2) and (iii-2) hold in any wBCK-algebra (cf. [12, Lemma 2(a,b)] or [16,
Proposition 2.1]). Thus, IB0⊆ K.

4. Some subvarieties of B and their logics

As shown in Propositions 3.5–3.7 of [8], one can define lattice operations
in every basic algebra A so that it becomes a bounded lattice in which the
involution ¬ is antitone, i.e., acts as the so called De Morgan complemen-
tation (m-complementation, for short). In particular,

x ∨ y := ¬(¬x⊕ y) ⊕ y, x ∧ y := ¬(¬x ∨ ¬y), 1 := ¬0,
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and, in the IB0-algebra corresponding to A,

(x→ y) → y = x ∨ y = (y → x) → x. (4.1)

The lattice order in A is characterised by

x ≤ y iff ¬x⊕ y = 1.

If the induced lattice is orthocomplemented, i.e., satisfies the identity

¬x ∨ x = 1,

or orthomodular, i.e., is orthocomplemented and satisfies the condition

if x ≤ y and x ∨ ¬y = 1, then x = y, (4.2)

we say that such is the basic algebra A itself. This is the case if and only
if A satisfies the first, respectively, the second of the following identities:

B5: x⊕ x = x,

B6: y ⊕ (x ∧ y) = y;

see [8, Theorem 3.13] or [5, Corollary 4.2], resp., [3, Theorem 6] or [5,
Theorem 4.3]. The identity B6 is a converted form of the equivalent quasi-
identity

B7: if x ≤ y, then y ⊕ x = y.

The lattice induced in a basic algebra is even sectionally m-complemented,
i.e., has m-complemented sections: for every p and all x ≥ p, the element
¬x⊕p (i.e., x→ p) is an m-complement of x in the upper section [p, 1]—see
Section 3 in [8]. If each sectional m-complement is actually an orthocom-
plement, we call such a basic algebra sectionally orthocomplemented. These
basic algebras are characterised by an additional identity

B8: x⊕ (x⊕ y) = x⊕ y,

see Corollary 5 below. Notice that an orthocomplemented basic algebra
is not necessary sectionally orthocomplemented in this sense. It is easily
seen, however, that every section of a sectionally orthocomplemented basic
algebra turns out to be orthomodular if and only if the algebra itself is
orthomodular.

At last, a basic algebra is called monotone (also left-monotone), if the
following law is fulfilled in it:

B9: if x ≤ y, then z ⊕ x ≤ z ⊕ y;
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see, e.g., [5, Definition 2.20]. As the right monotonicity law is fulfilled in all
basic algebras ([8, Proposition 3.5(b)]), every commutative basic algebra is
monotone.

Let the symbols CB, AB, OB, sOB, OmB, MB stand for the class
of commutative, associative, orthocomplemented, sectionally orthocom-
plemented, orthomodular, and monotone basic algebras, respectively (of
course, AB is the class of all MV-algebras). We now move to the respec-
tive subvarieties of IB0.

Theorem 4. A basic algebra is commutative, associative, orthocomple-
mented, sectionally orthocomplemented, orthomodular or monotone if and
only if its associated IB0-algebra satisfies the (quasi)identity (a), (b), (c),
(d), (e) or (f), respectively:

(a) (x→ 0) → y ≤ (y → 0) → x,

(b) x→ y ≤ (z → x) → (z → y),

(c) (x→ 0) → x ≤ x,

(d) x→ (x→ y) ≤ x→ y,

(e) if x ≤ y, then (y → 0) → x = y,

(f) x→ y ≤ x→ ((z → y) → y).

The condition (e) is equivalent, in every basic algebra, to the conjunction
of (c) and

(g) ((x→ y) → y) → 0 ≤ y → x.

Proof: (a) In virtue of (2.1), the conjunction of (a) and its reverse in-
equality is the implicative counterpart of the commutative law for ⊕.

(b) By [8, Proposition 3.11], a basic algebra is an MV-algebra iff (b)
holds. See also the note subsequent to Proposition 1 in [4].

(c) Suppose that A is a basic algebra. By (2.1) and (4.1), the condition
(c) means that 1 = (¬x → x) → x = ¬x ∨ x, i.e., that A is orthocomple-
mented (and conversely).

(d) According to Corollary 3.5 of [16], a wBCK*-algebra is sectionally
orthocomplemented if and only if it satisfies the condition

x ≤ y whenever x ≤ x→ y. (4.3)

By [14, Lemma 4.1], the condition is equivalent in commutative wBCK*-
algebras to the contraction law
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x→ (x→ y) = x→ y (4.4)

(alternatively, see Corollaries 6.5 and 6.6 in [14]). It is further equivalent
to the inequality (d), as the reverse inequality of the latter holds in every
wBCK*-algebra by the condition (i-1) of Theorem 3. The conclusion follows
now from Proposition 1.

(e) This condition is the counterpart of B7.

(f) Those wBCK*-algebras satisfying the isotonicity law

if x ≤ y, then z → x ≤ z → y (4.5)

were termed quasi-BCK*-algebras or just qBCK*-algebras in [13]. Evi-
dently, this law is the counterpart of B9. According to [14, Proposition
3.6], a wBCK*-algebra is a qBCK*-algebra if and only (f) holds in it.

As to the last assertion of the theorem, a basic algebra A satisfying (c)
is orthocomplemented; let us see that (g) makes it orthomodular. In view
of (4.2), suppose that x ≤ y and x ∨ ¬y = 1, i.e.,

(x→ y) → y = x ∨ y = y and ¬y → x ≤ x

—see (4.1). By (g) and the definition of ¬ in (2.1), then ¬y ≤ y → x;
this implies, by the exchange rule (2.3) (which holds in the IB0-algebra
associated to A), that y ≤ ¬y → x, whence y ≤ x and x = y. Thus, A is
indeed orthomodular; therefore, (c) and (g) together imply (e).

Conversely, (c) is an easy consequence of (e). Further, due to the
exchange rule, (e) implies that y → 0 ≤ y → x whenever x ≤ y. In
particular, as x ≤ (y → x) → x (recall (4.1)),

((y → x) → x) → 0 ≤ ((y → x) → x) → x ≤ y → x;

the latter inequality can be easily verified using item (iii-2) of Theorem 3.
So, (g) also follows from (e).

Notice that, due to I5, (a) can be rewritten as the contraposition law
(x → y) ≤ (y → 0) → (x → 0), and, due to condition (i-1) of Theorem
3, (c) can be replaced by the identity (x → 0) → x = x. This identity,
as the definition of ⊕ in (2.1) shows, is the the implicational form of the
idempotency law x⊕ x = x. Also, due to I2 and (2.2), (c) is equivalent to
x→ (x→ 0) ≤ x→ 0, a particular case of (d). As MV-algebras are known
to be equivalent to bounded BCK-algebras [17], an IB0-algebra satisfies
(b) if and only if it is a BCK*-algebra. By [14, Proposition 3.6], (f) is



106 Jānis C̄ırulis

equivalent to a shorter axiom x → y ≤ x → (z → y). At last, since (4.4)
is an implicational counterpart of B8 (recall I5), we immediately arrive at
the following conclusion.

Corollary 5. The class of sectionally orthocomplemented basic algebras
is a variety characterised by B1–B4 and B8.

A few other subvarieties of B are reviewed in [6].
Now consider the following formula schemes suggested by items (a)–(d),

(f) and (g) of the preceding theorem:

A5: ((φ→ 0) → ψ) → ((ψ → 0) → φ),

A6: (φ→ ψ) → ((χ→ φ) → (χ→ ψ)),

A7: ((φ→ 0) → φ) → φ,

A8: (φ→ (φ→ ψ)) → (φ→ ψ),

A9: (((φ→ ψ) → ψ) → 0) → (ψ → φ),

A10: (φ→ ψ) → (φ→ ((χ→ ψ) → ψ)).

Using them, we introduce logical systems for the subvarieties of B charac-
terised in Theorem 4 as follows:

LCB to be the extension of LB by A5 (for CB),
LAB to be the extension of LB by A6 (for AB),
LOB to be the extension of LB by A7 (for OB),
LsOB to be the extension of LB by A8 (for sOB),
LOmB to be the extension of LOB by A9 (for OmB),
LMB to be the extension of LB by A10 (for MB).

As all these logics are extensions of LB , the subsequent corollary follows
immediately from Lemma 2 (cf. [2, Corollary 4.9]).

Corollary 6. The logics LCB, LAB, LOB, LsOB, LOM , LOmB and LMB

are algebraizable.

Corollary 7. The variety of IB0-algebras corresponding to that of com-
mutative (associative, orthocomplemented, sectionally orthocomplemented,
orthomodular, monotone) basic algebras is an equivalent algebraic semantic
for the logic LCB (resp., LAB, LOB, LsOB, LOmB, LMB).
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Proof: By Theorem 3 and (3.1), any formula χ is derivable in LB from a
set of formulas Γ+A5 if and only if the equation χ = 1 is a IB0-consequence
of Γ+A5. Consequently, χ is derivable in LCB from Γ if and only if χ = 1
is a K-consequence of Γ, where K is the class of IB0-algebras satisfying
the identity (a) in Theorem 4. Of course, (3.2) holds true for this K. So,
this class is an algebraic semantics for LCB .

The other statements are proved similarly.

We end the section with several observations that make it possible to
simplify some of the considered logics. Notice that the rule R3 was not
required in proofs of (3.3) and items (i)–(iii) of Lemma 2.

Proposition 8. In LMB, A10 and R3 may be replaced by the rule

R4:
φ→ ψ

(χ→ φ) → (χ→ ψ)

Proof: Evidently, R3 is a consequence of R4. By A1 and R4, the sequence

φ→ ((ψ → φ) → φ), (χ→ φ) → (χ→ ((ψ → φ) → φ))

is a derivation of A10. Thus, (LMB − A10 − R3 + R4) is an extension
of LMB . On the other hand, the rule R4, being the counterpart of the
isotonicity rule (4.5), is derivable in LMB by virtue of (3.1).

Proposition 9. The rule R3 is dependent in LCB.

Proof: We first show, without using R3, that in LCB

(i) ⊢ ((ψ → 0) → (χ→ 0)) → (χ→ ψ),
(ii) ⊢ (χ→ φ) → ((φ→ 0) → (χ→ 0)).

Derivation for (i):

(a) ((ψ → 0) → (χ→ 0)) → (((χ→ 0) → 0) → ψ) [A5]

(b) ((χ→ 0) → 0) → (((ψ → 0) → (χ→ 0)) → ψ) [(a),(3.3)]

(c) χ→ ((χ→ 0) → 0) [A2]

(d) χ→ (((ψ → 0) → (χ→ 0)) → ψ) [(c),(b),L2(iii)]

(e) ((ψ → 0) → (χ→ 0)) → (χ→ ψ) [(d),(3.3)]
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Derivation for (ii):

(a) (((χ→ 0) → 0) → φ) → ((φ→ 0) → (χ→ 0)) [A5]

(b) χ→ ((χ→ φ) → φ) [A2]

(c) (0 → χ) → (((χ→ 0) → 0) → χ) [A3,(3.3)]

(d) ((χ→ 0) → 0) → χ [A4,(c),R1]

(e) ((χ→ 0) → 0) → ((χ→ φ) → φ) [(d),(b),L2(iii)]

(f) (χ→ φ) → (((χ→ 0) → 0) → φ) [(e),(3.3)]

(g) (χ→ φ) → ((φ→ 0) → (χ→ 0)) [(f),(a),L2(iii)]

To get R3 in (LCB − R3), it suffices to derive R4:

(a) φ→ ψ [hyp]

(b) (ψ → 0) → (φ→ 0) [(a), R2]

(c) ((φ→ 0) → (χ→ 0)) → ((ψ → 0) → (χ→ 0)) [(b), R2]

(e) (χ→ φ) → (χ→ ψ) [(ii), (c), L2(iii), (i), L2(iii)]

Proposition 10. In LsOB, the axioms A3 and A8 may be replaced by

A11: ((φ→ ψ) → φ) → φ.

Proof: In view of A3, axioms A11 and A8 are equivalent in LB and,
hence, derivable in LsOB . We have to prove that A3 and A8 are derivable
in (LB − A3 + A11).

According to [16, Corollary 3.5], a wBCK*-algebra A is sectionally
orthocomplemented if and only if it is commutative and satisfies the con-
dition (4.3). By [16, Corollary 3.7], this is the case if and only if A satisfies
the Pierce law (x → y) → x = x. This concerns, of course, also bounded
wBCK*-algebras. Actually, it is sufficient to consider only a half of the law,
(x→ y) → x ≤ x, for the reverse inequality holds in any wBCK*-algebra.

Now it follows that both I2 and (4.3) are consequences, in the class of
wBCK*-algebras, of the latter inequality, which is the algebraic counterpart
of A11. Notice that the axiom A3 is not used in the proof of Lemma 2, and
an inspection of the proof of Theorem 3 shows that the class of bounded
wBCK*-algebras is actually an equivalent algebraic semantics of (LB −

A3). Hence, in view of the corresponding version of (3.1), A3 and A8 are
indeed derivable from A11 in (LB − A3).
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Corollary 11. In LOmB, the axioms A3 and A7 may be replaced by A11.
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[7] I. Chajda, R. Halaš, J. Kühr, Semilattice Structures, Heldermann Verlag,

Lemgo (2007).
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