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We consider an approach to propositional synonymy in proof-theoretic semantics

that is defined with respect to a bilateral G3-style sequent calculus SC2Int for

the bi-intuitionistic logic 2Int. A distinctive feature of SC2Int is that it makes

use of two kinds of sequents, one representing proofs, the other representing

refutations. The structural rules of SC2Int, in particular its cut rules, are shown

to be admissible. Next, interaction rules are defined that allow transitions from

proofs to refutations, and vice versa, mediated through two different negation

connectives, the well-known implies-falsity negation and the less well-known co-

implies-truth negation of 2Int. By assuming that the interaction rules have no

impact on the identity of derivations, the concept of inherited identity between

derivations in SC2Int is introduced and the notions of positive and negative

synonymy of formulas are defined. Several examples are given of distinct formulas

that are either positively or negatively synonymous. It is conjectured that the

two conditions cannot be satisfied simultaneously.
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1. Introduction

This paper is a sequel to [18], where an approach to synonymy of formulas
in proof-theoretic semantics is explored that is not based on a structural
isomorphism between derivation trees and that departs from the idea of
identifying only derivations of one and the same formula. The approach
is bilateral in the sense that a distinction is drawn between two kinds of
derivations, namely proofs and refutations.1 The identification of deriva-
tions of distinct formulas is arrived at in particular by considering any proof
of a formula A as a refutation of A’s negation, ∼A, and identifying a refu-
tation of A with a proof of ∼A. Such a direct relationship between proofs
and refutations understood as disproofs is given in the constructive para-
consistent logic N4 with strong negation due to Almukdad and Nelson [1],
a system that was independently studied already by Prawitz (very briefly
in Appendix B of [12]) and von Kutschera [14]. In [18] the notion of in-
herited identity of derivations is introduced for derivations in a cut-free
sequent system for N4 with two kinds of sequents by considering sequent
rules the application of which leaves the identity of derivations untouched.
The relation of inherited identity is used to define a bilateralist notion of
synonymy between formulas, which is a relation drawing more fine-grained
distinctions between formulas than the relation of strong equivalence that
obtains between two formulas A and B if both A and B and their strong
negations ∼A and ∼B are interderivable.

In [18] the problem was left open, whether and how the explored bilat-
eralist conception of propositional synonymy in proof-theoretic semantics
can be applied to a system closely related to N4, namely the bi-intuitionistic
system 2Int from [15], see also [4]. Like in the proof theory of N4, in proof
systems for 2Int a distinction can be drawn between proofs and refuta-
tions, there called “dual proofs”. Now, however, the relationship between
proofs and refutations is more intricate since the transition between them
is reflected in the logical vocabulary not by the presence of a single strong
negation connective, but by making use of two negation operations, the
familiar implies-falsity negation known from intuitionistic logic and the co-
implies-truth negation from 2Int. These are defined on the basis of two

1In [19] we discuss the existing notions of bilateralism in the context of proof-
theoretic semantics and propose, based on our understanding of bilateralism, an ex-
tension to logical multilateralism as a theory of multiple derivability relations, more
specifically, as a theory of sequent calculi that make use of multiple sequent arrows.
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dual implications, namely the intuitionistic conditional and a so-called “co-
implication”, which can be seen as the object language realizations of the
two derivability relations.

This paper is devoted to applying the bilateralist approach of [18]
to 2Int. For that purpose, first of all a suitable proof-theoretic pre-
sentation of 2Int is needed, and this is a central contribution of the
present paper. For motivation of the bilateralist approach in the case of N4
based on a proof/disproof interpretation that amends the Brouwer-Heyting-
Kolmogorov interpretation of the intuitionistic connectives and a compari-
son to other approaches to propositional synonymy in proof-theoretic terms
we refer to [18]. In the present paper we introduce the basic ideas only to
the extent of keeping the paper self-contained. In Section 2 we first present
the bilateralist sequent calculus SC2Int for 2Int. Next, in Section 3, the
admissibility of the structural rules of SC2Int is dealt with. A detailed
proof of cut-elimination for SC2Int is given in the appendix, Section 6.
Section 4 is devoted to inherited identity of derivations in SC2Int and the
definition of propositional synonymy. We conclude the paper with a brief
summary and outlook in Section 5.

2. The calculus SC2Int

The purpose of this section is to introduce a bi-intuitionistic sequent calcu-
lus and to give proofs of admissibility for its structural rules. The calculus
we will present, called SC2Int, is a sequent calculus for the bi-intuitionistic
logic 2Int from [15]. There a natural deduction system for this logic, N2Int,
is given to which SC2Int is equivalent in terms of what is derivable. We
spell out below what this amounts to exactly. What is important is that
these calculi represent a kind of bilateralist reasoning, since they do not
only internalize processes of verification or provability but also the dual
processes in terms of falsification or what is called dual provability. In [17]
a normal form theorem for N2Int is stated, here, we want to prove a cut-
elimination theorem for SC2Int, which goes beyond the results existing so
far.

The language L2Int of 2Int, as given in [15], is defined in Backus-Naur
form as follows:

A ::= p | ⊥ | > | (A ∧A) | (A ∨A) | (A→ A) | (A �A).
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As can be seen, we have a non-standard connective in this language, namely
the operator of co-implication, �, which acts as a dual to implication, just
like conjunction and disjunction can be seen as dual connectives.2 With
that, we are in the realms of so-called bi-intuitionistic logic, which is a
conservative extension of intuitionistic logic with co-implication.3 We read
A �B as ‘B co-implies A’.

The general design of SC2Int resembles the intuitionistic sequent calcu-
lus G3ip. The distinguishing features of this calculus consist in the shared
contexts for all the logical rules, the axiom (in our calculus the reflexiv-
ity rules) being restricted to atomic formulas and the admissibility of all
structural rules (cf. [10, pp. 28–30] for more information about the origins
of this calculus). Another distinguishing feature is the repetition of A→ B
in the left premise of the left introduction rule for implication, which is
necessary for the proof of admissibility of contraction. Here, this happens
in → La as well as with A �B in �Lc.

We will use p, q, r, ... for atomic formulas, A,B,C, ... for arbitrary for-
mulas, and Γ,∆,Γ′, ... for multisets of formulas. For a singleton multiset
{A} we usually write just A, and A,Γ as well as Γ, A (∆,Γ as well as Γ,∆)
designates the union of the multisets Γ and {A} (∆ and Γ). Sequents are
of the form (Γ; ∆) `∗ C (with Γ and ∆ being finite, possibly empty mul-
tisets), which are read as “From the verification of all formulas in Γ and
the falsification of all formulas in ∆ one can derive the verification (resp.

2An anonymous reviewer raised the question whether co-implication as the dual of
implication is again an implication (and the co-negation defined in section 4 is indeed
a negation), whereas conjunction as the dual of disjunction is not a disjunction, and
disjunction as the dual of conjunction is not a conjunction. Thus, is the dual of a logical
operation of a kind different from the kind of operation from which it is a dual? We
cannot address this general question here, or the questions “What is an implication?”
and “What is a negation?”. As far as 2Int is concerned, there is a clear sense in which
implication, →, and co-implication, �, are of the same kind. In a two-sorted term
calculus for 2Int, see [2], the rule for introducing → on the right of a sequent arrow
in proofs (for introducing � on the right of a sequent arrow in dual proofs) comes with
λ-abstraction, and the rule for introducing → on the left of a sequent arrow in proofs
(for introducing � on the left of a sequent arrow in dual proofs) comes with functional
application. The same holds for negation and co-negation in 2Int.

3Note that there is also a use of bi-intuitionistic logic in the literature to refer to a
specific system, namely BiInt, also called Heyting-Brouwer logic (e.g. [13, 6, 11, 9, 5]).
Co-implication is there to be understood to internalize the preservation of non-truth
from the conclusion to the premises in a valid inference. The system 2Int, which is
treated here, uses the same language as BiInt, but the meaning of co-implication differs
(cf. [17, p. 30f.] and [15, 16, 4]).
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falsification) of C for ∗ = + (resp. ∗ = −)”.4 Thus, we have a calculus in
which more than one derivability relation is considered, not only the one of
verification but also the one of falsification (or refutation).5 The formulas
in Γ can then be understood as assumptions, while the formulas in ∆ can
be understood as counterassumptions. SC2Int is equivalent to N2Int in
that we have a proof in N2Int of A from the pair (Γ; ∆) of assumptions
Γ and counterassumptions ∆, iff the sequent (Γ; ∆) `+ A is derivable in
SC2Int and we have a dual proof of A from the pair (Γ; ∆) of assumptions
Γ and counterassumptions ∆, iff the sequent (Γ; ∆) `− A is derivable in
SC2Int.

In contrast to G3ip, there will be no distinction between axioms and
logical rules but within the logical rules the zero-premise rules, which com-
prise Rf+, Rf−, ⊥La, >Lc,⊥R−, and >R+, are distinguished from the
non-zero-premise rules due to the special role of the former for the admis-
sibility proofs below. Each of the logical rules has a context designated by
Γ and ∆, active formulas designated by A and B and a principal formula,
which is the one introduced on the left or right side of `∗. Within the right
introduction rules we need to distinguish whether the derivability relation
expresses verification or falsification by using the superscripts + and −.
Within the left rules this is not necessary, but what is needed here is dis-
tinguishing an introduction of the principal formula into the assumptions
from an introduction into the counterassumptions. The former are indexed
by superscript a, while the latter are indexed by superscript c. The set of
R+ and La rules are the proof rules; the set of R− and Lc rules are the
dual proof rules.

SC2Int

For ∗ ∈ {+, -}:

(Γ, p; ∆) `+ p
Rf+

(Γ; ∆, p) `− p
Rf−

4Note that the notation for sequents in [18] is different and follows the presentation
of the subformula calculus for N4 in [7, 8]. In particular, expressions Γ : ∆⇒∗ C (with
Γ and ∆ being finite, possibly empty multisets) are read as “From the falsification of
all formulas in Γ and the verification of all formulas in ∆ one can derive the verification
(resp. falsification) of C for ∗ = + (resp. ∗ = −)”. The notation in the present paper is
taken from [3]

5In N2Int this is indicated by using single lines for verification and double lines for
falsification.
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(Γ,⊥; ∆) `∗ C
⊥La

(Γ; ∆,>) `∗ C
>Lc

(Γ; ∆) `− ⊥ ⊥R−
(Γ; ∆) `+ > >R+

(Γ; ∆) `+ A (Γ; ∆) `+ B

(Γ; ∆) `+ A ∧B ∧R+
(Γ, A,B; ∆) `∗ C

(Γ, A ∧B; ∆) `∗ C
∧La

(Γ; ∆) `− A
(Γ; ∆) `− A ∧B

∧R−1
(Γ; ∆) `− B

(Γ; ∆) `− A ∧B
∧R−2

(Γ; ∆, A) `∗ C (Γ; ∆, B) `∗ C
(Γ; ∆, A ∧B) `∗ C

∧Lc

(Γ; ∆) `+ A

(Γ; ∆) `+ A ∨B
∨R+

1

(Γ; ∆) `+ B

(Γ; ∆) `+ A ∨B
∨R+

2

(Γ, A; ∆) `∗ C (Γ, B; ∆) `∗ C
(Γ, A ∨B; ∆) `∗ C

∨La

(Γ; ∆) `− A (Γ; ∆) `− B
(Γ; ∆) `− A ∨B ∨R−

(Γ; ∆, A,B) `∗ C
(Γ; ∆, A ∨B) `∗ C

∨Lc

(Γ, A; ∆) `+ B

(Γ; ∆) `+ A→ B
→R+

(Γ, A→ B; ∆) `+ A (Γ, B; ∆) `∗ C
(Γ, A→ B; ∆) `∗ C

→La

(Γ; ∆) `+ A (Γ; ∆) `− B
(Γ; ∆) `− A→ B

→R−
(Γ, A; ∆, B) `∗ C

(Γ; ∆, A→ B) `∗ C
→Lc

(Γ; ∆) `+ A (Γ; ∆) `− B
(Γ; ∆) `+ A �B

�R+
(Γ, A; ∆, B) `∗ C

(Γ, A �B; ∆) `∗ C
�La

(Γ; ∆, B) `− A
(Γ; ∆) `− A �B

�R−
(Γ; ∆, A �B) `− B (Γ; ∆, A) `∗ C

(Γ; ∆, A �B) `∗ C
�Lc

Note that the rules for ∧La, ∨Lc, → Lc and �La could also be given
in the form of two rules, each with only one active formula A or B, as it
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is for example done in Gentzen’s original calculus for the left conjunction
rule. We need this single rule formulation, however, in order to get the
invertibility of these rules (cf. Lemma 3.3 below), which is important for
the proof of admissibility of contraction. As said above, the structural rules
do not have to be taken as primitive in the calculus but can be shown to
be admissible.

We want to consider rules for weakening, contraction and cut. Due to
the dual nature of the calculus, we need two rules for each of these rules:

(Γ; ∆) `∗ C
(Γ, A; ∆) `∗ C

Wa
(Γ; ∆) `∗ C

(Γ; ∆, A) `∗ C
W c

(Γ, A,A; ∆) `∗ C
(Γ, A; ∆) `∗ C

Ca
(Γ; ∆, A,A) `∗ C

(Γ; ∆, A) `∗ C
Cc

(Γ; ∆) `+ D (Γ′, D; ∆′) `∗ C
(Γ,Γ′; ∆,∆′) `∗ C

Cuta

(Γ; ∆) `− D (Γ′; ∆′, D) `∗ C
(Γ,Γ′; ∆,∆′) `∗ C

Cutc

3. Proving admissibility of the structural rules

3.1. Preliminaries

The proofs of admissibility of the structural rules and especially of cut-
elimination are conducted analogously to the respective proofs of [10, pp. 30–
40] for G3ip. The proofs will use induction on weight of formulas and
height of derivations.

Definition 3.1. The weight w(A) of a formula A is defined inductively by
w(⊥) = w(>) = 0,
w(p) = 1 for atoms p,
w(A # B) = w(A) + w(B) + 1 for # ∈ {∧,∨,→,�}.

Definition 3.2. A derivation in SC2Int is either an instance of a zero-
premise rule, or an application of a logical rule to derivations concluding
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its premises. The height of a derivation is the greatest number of successive
applications of rules in it, where zero-premise rules have height 0.

First, we will show that the reflexivity rules can be generalized to in-
stances with arbitrary formulas, not only atomic formulas.

Lemma 3.3. The sequents (Γ, C; ∆) `+ C and (Γ; ∆, C) `− C are derivable
for an arbitrary formula C and arbitrary context (Γ; ∆).

Proof: The proof is by induction on weight of C. If w(C) ≤ 1, we have
the 19 cases listed below. Note that for some of the derivations there is
more than one possibility to derive the desired sequent and also some of the
conclusions of zero-premise rules are conclusions of more than one of those
rules. We will just show one exemplary derivation for each case, since this
is enough for the proof.

C = ⊥. Then (Γ, C; ∆) `+ C is an instance of ⊥La and (Γ; ∆, C) `− C
is an instance of ⊥R−.

C = >. Then (Γ, C; ∆) `+ C is an instance of >R+ and (Γ; ∆, C) `− C
is an instance of >Lc.

C = p for some atom p. Then (Γ, C; ∆) `+ C is an instance of Rf+

and (Γ; ∆, C) `− C is an instance of Rf−.
C = ⊥ ∧⊥. Then (Γ, C; ∆) `+ C and (Γ; ∆, C) `− C are derived by

(Γ,⊥,⊥; ∆) `+ ⊥ ∧⊥
⊥La

(Γ,⊥ ∧⊥; ∆) `+ ⊥ ∧⊥
∧La

and

(Γ; ∆,⊥ ∧⊥) `− ⊥ ⊥R−

(Γ; ∆,⊥ ∧⊥) `− ⊥ ∧⊥ ∧R−

C = ⊥ ∨⊥. Then (Γ, C; ∆) `+ C and (Γ; ∆, C) `− C are derived by

(Γ,⊥; ∆) `+ ⊥ ∨⊥
⊥La

(Γ,⊥; ∆) `+ ⊥ ∨⊥
⊥La

(Γ,⊥ ∨⊥; ∆) `+ ⊥ ∨⊥
∨La

and

(Γ; ∆,⊥ ∨⊥) `− ⊥ ⊥R−
(Γ; ∆,⊥ ∨⊥) `− ⊥ ⊥R−

(Γ; ∆,⊥ ∨⊥) `− ⊥ ∨⊥ ∨R−

C = ⊥ → ⊥. Then (Γ, C; ∆) `+ C and (Γ; ∆, C) `− C are derived by

(Γ,⊥ → ⊥,⊥; ∆) `+ ⊥
⊥La

(Γ,⊥ → ⊥; ∆) `+ ⊥ → ⊥ →R+

and

(Γ,⊥; ∆,⊥) `− ⊥ → ⊥
⊥La

(Γ; ∆,⊥ → ⊥) `− ⊥ → ⊥
→Lc

C = ⊥ �⊥. Then (Γ, C; ∆) `+ C and (Γ; ∆, C) `− C are derived by
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(Γ,⊥; ∆,⊥) `+ ⊥ �⊥
⊥La

(Γ,⊥ �⊥; ∆) `+ ⊥ �⊥
�La

and

(Γ; ∆,⊥ �⊥,⊥) `− ⊥ ⊥R−

(Γ; ∆,⊥ �⊥) `− ⊥ �⊥
�R−

C = ⊥ ∧>. Then (Γ, C; ∆) `+ C and (Γ; ∆, C) `− C are derived by

(Γ,⊥,>; ∆) `+ ⊥ ∧>
⊥La

(Γ,⊥ ∧>; ∆) `+ ⊥ ∧>
∧La

and

(Γ; ∆,⊥ ∧>) `− ⊥ ⊥R−

(Γ; ∆,⊥ ∧>) `− ⊥ ∧>
∧R−1

C = ⊥ ∨>. Then (Γ, C; ∆) `+ C and (Γ; ∆, C) `− C are derived by

(Γ,⊥ ∨>; ∆) `+ > >R+

(Γ,⊥ ∨>; ∆) `+ ⊥ ∨>
∨R+

2
and

(Γ; ∆,⊥,>) `− ⊥ ∨>
>Lc

(Γ; ∆,⊥ ∨>) `− ⊥ ∨>
∨Lc

C = ⊥ → >. Then (Γ, C; ∆) `+ C and (Γ; ∆, C) `− C are derived by

(Γ,⊥ → >,⊥; ∆) `+ > >R+

(Γ,⊥ → >; ∆) `+ ⊥ → > →R+

and

(Γ,⊥; ∆,>) `− ⊥ → >
>Lc

(Γ; ∆,⊥ → >) `− ⊥ → >
→Lc

C = ⊥ �>. Then (Γ, C; ∆) `+ C and (Γ; ∆, C) `− C are derived by

(Γ,⊥; ∆,>) `+ ⊥ �>
⊥La

(Γ,⊥ �>; ∆) `+ ⊥ �>
�La

and

(Γ; ∆,⊥ �>,>) `− ⊥
>Lc

(Γ; ∆,⊥ �>) `− ⊥ �>
�R−

C = > ∧⊥. Then (Γ, C; ∆) `+ C and (Γ; ∆, C) `− C are derived by

(Γ,>,⊥; ∆) `+ > ∧⊥
⊥La

(Γ,> ∧⊥; ∆) `+ > ∧⊥
∧La

and

(Γ; ∆,> ∧⊥) `− ⊥ ⊥R−

(Γ; ∆,> ∧⊥) `− > ∧⊥
∧R−2

C = > ∨⊥. Then (Γ, C; ∆) `+ C and (Γ; ∆, C) `− C are derived by

(Γ,> ∨⊥; ∆) `+ > >R+

(Γ,> ∨⊥; ∆) `+ > ∨⊥
∨R+

1
and

(Γ; ∆,>,⊥) `− > ∨⊥
>Lc

(Γ; ∆,> ∨⊥) `− > ∨⊥
∨Lc

C = > → ⊥. Then (Γ, C; ∆) `+ C and (Γ; ∆, C) `− C are derived by

(Γ,> → ⊥; ∆) `+ > >R+

(Γ,⊥; ∆) `+ > → ⊥
⊥La

(Γ,> → ⊥; ∆) `+ > → ⊥
→La

and
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(Γ; ∆,> → ⊥) `+ > >R+

(Γ; ∆,> → ⊥) `− ⊥ ⊥R−

(Γ; ∆,> → ⊥) `− > → ⊥ →R−

C = > �⊥. Then (Γ, C; ∆) `+ C and (Γ; ∆, C) `− C are derived by

(Γ,> �⊥; ∆) `+ > >R+

(Γ,> �⊥; ∆) `− ⊥ ⊥R−

(Γ,> �⊥; ∆) `+ > �⊥
�R+

and

(Γ; ∆,> �⊥) `− ⊥ ⊥R−
(Γ; ∆,>) `− > �⊥

>Lc

(Γ; ∆,> �⊥) `− > �⊥
�Lc

C = > ∧>. Then (Γ, C; ∆) `+ C and (Γ; ∆, C) `− C are derived by

(Γ,> ∧>; ∆) `+ > >R+

(Γ,> ∧>; ∆) `+ > >R+

(Γ,> ∧>; ∆) `+ > ∧> ∧R+

and

(Γ; ∆,>) `− > ∧>
>Lc

(Γ; ∆,>) `− > ∧>
>Lc

(Γ; ∆,> ∧>) `− > ∧>
∧Lc

C = > ∨>. Then (Γ, C; ∆) `+ C and (Γ; ∆, C) `− C are derived by

(Γ,> ∨>; ∆) `+ > >R+

(Γ,> ∨>; ∆) `+ > ∨> ∨R+

and

(Γ; ∆,>,>) `− > ∨>
>Lc

(Γ; ∆,> ∨>) `− > ∨>
∨Lc

C = > → >. Then (Γ, C; ∆) `+ C and (Γ; ∆, C) `− C are derived by

(Γ,> → >,>; ∆) `+ > >R+

(Γ,> → >; ∆) `+ > → > →R+

and

(Γ,>; ∆,>) `− > → >
>Lc

(Γ; ∆,> → >) `− > → >
→Lc

C = > �>. Then (Γ, C; ∆) `+ C and (Γ; ∆, C) `− C are derived by

(Γ,>; ∆,>) `+ > �>
>Lc

(Γ,> �>; ∆) `+ > �>
�La

and

(Γ; ∆,> �>,>) `− >
>Lc

(Γ; ∆,> �>) `− > �>
�R−
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The inductive hypothesis is that (Γ, C; ∆) `+ C and (Γ; ∆, C) `− C
are derivable for all formulas C with w(C) ≤ n, and we have to show that
(Γ, D; ∆) `+ D and (Γ; ∆, D) `− D are derivable for formulas D of weight
≤ n+ 1. There are four cases:

D = A ∧ B. By the definition of weight and our inductive hypothesis,
w(A) ≤ n and w(B) ≤ n.
We can derive (Γ, A ∧B; ∆) `+ A ∧B by

(Γ, A,B; ∆) `+ A

(Γ, A ∧B; ∆) `+ A
∧La

(Γ, A,B; ∆) `+ B

(Γ, A ∧B; ∆) `+ B
∧La

(Γ, A ∧B; ∆) `+ A ∧B ∧R+

and (Γ; ∆, A ∧B) `− A ∧B by

(Γ; ∆, A) `− A
(Γ; ∆, A) `− A ∧B

∧R−1
(Γ; ∆, B) `− B

(Γ; ∆, B) `− A ∧B
∧R−2

(Γ; ∆, A ∧B) `− A ∧B
∧Lc

(Γ; ∆, A) `− A and (Γ; ∆, B) `− B are derivable by the inductive
hypothesis and since the context is arbitrary, so are (Γ′, A; ∆) `+ A and
(Γ′′, B; ∆) `+ B, for Γ′ = Γ, B and Γ′′ = Γ, A.

D = A ∨B. As before, w(A) ≤ n and w(B) ≤ n.
We can derive (Γ, A ∨B; ∆) `+ A ∨B by

(Γ, A; ∆) `+ A

(Γ, A; ∆) `+ A ∨B
∨R+

1

(Γ, B; ∆) `+ B

(Γ, B; ∆) `+ A ∨B
∨R+

2

(Γ, A ∨B; ∆) `+ A ∨B
∨La

and (Γ; ∆, A ∨B) `− A ∨B by

(Γ; ∆, A,B) `− A
(Γ; ∆, A ∨B) `− A

∨Lc
(Γ; ∆, A,B) `− B

(Γ; ∆, A ∨B) `− B
∨Lc

(Γ; ∆, A ∨B) `− A ∨B ∨R−

Again, by inductive hypothesis we get the derivability of (Γ, A; ∆) `+ A
and (Γ, B; ∆) `+ B and since the context is arbitrary, (Γ; ∆′, A) `− A and
(Γ; ∆′′, B) `− B are derivable, for ∆′ = ∆, B and ∆′′ = ∆, A.
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D = A→ B. As before, w(A) ≤ n and w(B) ≤ n.
We can derive (Γ, A→ B; ∆) `+ A→ B by

(Γ, A,A→ B; ∆) `+ A (Γ, A,B; ∆) `+ B

(Γ, A,A→ B; ∆) `+ B
→La

(Γ, A→ B; ∆) `+ A→ B
→R+

and (Γ; ∆, A→ B) `− A→ B by

(Γ, A; ∆, B) `+ A (Γ, A; ∆, B) `− B
(Γ, A; ∆, B) `− A→ B

→R−

(Γ; ∆, A→ B) `− A→ B
→Lc

The case of (Γ, A,B; ∆) `+ B was already mentioned in the case of
conjunction and with the same reasoning (Γ′, A; ∆) `+ A for Γ′ = Γ, A→
B, (Γ, A; ∆′) `+ A for ∆′ = ∆, B as well as (Γ′; ∆, B) `− B for Γ′ = Γ, A
are derivable.

D = A �B. As before, w(A) ≤ n and w(B) ≤ n.
We can derive (Γ, A �B; ∆) `+ A �B by

(Γ, A; ∆, B) `+ A (Γ, A; ∆, B) `− B
(Γ, A; ∆, B) `+ A �B

�R+

(Γ, A �B; ∆) `+ A �B
�La

and (Γ; ∆, A �B) `− A �B by

(Γ; ∆, B,A �B) `− B (Γ; ∆, A,B) `− A
(Γ; ∆, B,A �B) `− A

�Lc

(Γ; ∆, A �B) `− A �B
�R−

With the same reasoning as above (Γ; ∆′, B) `− B is derivable for
∆′ = ∆, A �B and all other cases are already dealt with above.

3.2. Admissibility of weakening

We will now start with the proof of admissibility of weakening by induction
on height of derivations. The general procedure when proving admissibility
of a rule with this is to prove it for applications of this rule to conclusions
of zero-premise rules and then generalize by induction on the number of
applications of the rule to arbitrary derivations. Thus, we can assume that



On Synonymy in Proof-Theoretic Semantics. The Case of 2Int 199

there is only one instance – as the last step in the derivation – of the rule 
in question.

Theorem 3.4 (Height-preserving weakening). If (Γ; ∆) `∗ C is derivable
with a height of derivation at most n, then (Γ, D; ∆) `∗ C and (Γ; ∆, D) `∗
C are derivable with a height of derivation at most n for arbitrary D.

Proof: If n = 0, then (Γ; ∆) `∗ C is a zero-premise rule, which means
that one of the following six cases holds. C is an atom and 1) a formula
in Γ with ∗ = + or 2) a formula in ∆ with ∗ = −. Otherwise it can be
the case that 3) C is > with ∗ = + or 4) C is ⊥ with ∗ = −. Lastly, it
could be that 5) ⊥ is a formula in Γ or 6) > a formula in ∆. In either
case, (Γ, D; ∆) `∗ C and (Γ; ∆, D) `∗ C are conclusions of the respective
zero-premise rules. Our inductive hypothesis is now that height-preserving
weakening is admissible up to derivations of height ≤ n. Let (Γ; ∆) `∗ C
be derivable with a height of derivation at most n+ 1.
If the last rule applied is ∧La, then Γ = Γ′, A ∧B and the last step is

(Γ′, A,B; ∆) `∗ C
(Γ′, A ∧B; ∆) `∗ C

∧La

So (Γ′, A,B; ∆) `∗ C is derivable in ≤ n steps. By inductive hypothesis,
also (Γ′, A,B,D; ∆) `∗ C and (Γ′, A,B; ∆, D) `∗ C are derivable in ≤ n
steps. Thus, the application of ∧La gives a derivation of (Γ′, A∧B,D; ∆) `∗
C and (Γ′, A ∧B; ∆, D) `∗ C in ≤ n+ 1 steps.
If the last rule applied is ∧Lc, then ∆ = ∆′, A ∧B and the last step is

(Γ; ∆′, A) `∗ C (Γ; ∆′, B) `∗ C
(Γ; ∆′, A ∧B) `∗ C

∧Lc

So (Γ; ∆′, A) `∗ C and (Γ; ∆′, B) `∗ C are derivable in ≤ n steps. By
inductive hypothesis, also (Γ, D; ∆′, A) `∗ C, (Γ; ∆′, A,D) `∗ C,
(Γ, D; ∆′, B) `∗ C and (Γ; ∆′, B,D) `∗ C are derivable in ≤ n steps.
Thus, the application of ∧Lc to the first and the third premise and to the
second and the fourth premise gives a derivation of (Γ, D; ∆′, A ∧B) `∗ C
and (Γ; ∆′, A ∧B,D) `∗ C, respectively, in ≤ n+ 1 steps.
If the last rule applied is ∧R+, then C = A ∧B and the last step is

(Γ; ∆) `+ A (Γ; ∆) `+ B

(Γ; ∆) `+ A ∧B ∧R+
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So (Γ; ∆) `+ A and (Γ; ∆) `+ B are derivable in ≤ n steps. By induc-
tive hypothesis, also (Γ, D; ∆) `+ A, (Γ; ∆, D) `+ A, (Γ, D; ∆) `+ B and
(Γ; ∆, D) `+ B are derivable in ≤ n steps. Thus, the application of ∧R+

to the first and the third premise and to the second and the fourth premise
gives a derivation of (Γ, D; ∆) `+ A ∧ B and (Γ; ∆, D) `+ A ∧ B, respec-
tively, in ≤ n+ 1 steps.
If the last rule applied is ∧R−1 , then C = A ∧B and the last step is

(Γ; ∆) `− A
(Γ; ∆) `− A ∧B

∧R−1

So (Γ; ∆) `− A is derivable in ≤ n steps. By inductive hypothesis, also
(Γ, D; ∆) `− A and (Γ; ∆, D) `− A are derivable in ≤ n steps. Thus,
the application of ∧R−1 gives a derivation of (Γ, D; ∆) `− A ∧ B and
(Γ; ∆, D) `− A ∧B in ≤ n+ 1 steps.

For the other logical rules the same can be shown with similar steps.

Now we want to show one other thing related to weakening because we
will need this result later in our proof for the admissibility of the cut rules,
namely that for the special case that the weakening formula is > for W a

and respectively ⊥ for W c, the weakening rules are invertible, i.e.:

(Γ,>; ∆) `∗ C
(Γ; ∆) `∗ C

W>inv

(Γ; ∆,⊥) `∗ C
(Γ; ∆) `∗ C

W⊥inv

Lemma 3.5 (Special case of inverted weakening). If (Γ,>; ∆) `∗ C or
(Γ; ∆,⊥) `∗ C are derivable with a height of derivation at most n, then so
is (Γ; ∆) `∗ C.

Proof: If n = 0, then exactly the same reasoning as for Theorem 3.4 can
be applied here.
Now we assume height-preserving invertibility for these two special cases
of weakening up to height n, and let (Γ,>; ∆) `∗ C and (Γ; ∆,⊥) `∗
C be derivable with a height of derivation ≤ n + 1. The proof works
correspondingly to the proof of height-preserving weakening above. We
will show it for the case of the → Lc-rule this time, just to choose one
that is not familiar in ‘usual’ calculi, but it works similar for all logical
connectives and their rules.
If the last rule applied is → Lc, then we have ∆ = ∆′, A→ B and the last
step is
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(Γ, A,>; ∆′, B) `∗ C
(Γ,>; ∆′, A→ B) `∗ C

→Lc or respectively
(Γ, A; ∆′, B,⊥) `∗ C

(Γ; ∆′, A→ B,⊥) `∗ C
→Lc

So, (Γ, A,>; ∆′, B) `∗ C and (Γ, A; ∆′, B,⊥) `∗ C are derivable in ≤ n
steps. Then by inductive hypothesis, (Γ, A; ∆′, B) `∗ C is derivable in
≤ n steps. If we apply → Lc to this, this gives us (Γ; ∆′, A → B) `∗ C
in ≤ n+ 1 steps.

3.3. Admissibility of contraction

Before we can prove the admissibility of the contraction rules, we need
to prove the following lemma about the invertibility of premises and con-
clusions of the logical rules for the left introduction of formulas. Note that
for → La and �Lc the invertibility only holds for the right premises.6

Lemma 3.6 (Inversion).

(i1) If (Γ, A∧B; ∆) `∗ C is derivable with a height of derivation at most
n, then (Γ, A,B; ∆) `∗ C is derivable with a height of derivation at
most n.

(i2) If (Γ; ∆, A∧B) `∗ C is derivable with a height of derivation at most
n, then (Γ; ∆, A) `∗ C and (Γ; ∆, B) `∗ C are derivable with a height
of derivation at most n.

(ii1) If (Γ, A∨B; ∆) `∗ C is derivable with a height of derivation at most
n, then (Γ, A; ∆) `∗ C and (Γ, B; ∆) `∗ C are derivable with a height
of derivation at most n.

(ii2) If (Γ; ∆, A∨B) `∗ C is derivable with a height of derivation at most
n, then (Γ; ∆, A,B) `∗ C is derivable with a height of derivation at
most n.

(iii1) If (Γ, A→ B; ∆) `∗ C is derivable with a height of derivation at most
n, then (Γ, B; ∆) `∗ C is derivable with a height of derivation at most
n.

(iii2) If (Γ; ∆, A→ B) `∗ C is derivable with a height of derivation at most
n, then (Γ, A; ∆, B) `∗ C is derivable with a height of derivation at
most n.

6[10, p. 33] give a counterexample for the implication rule. The analogous coun-
terexamples for SC2Int would be the derivability of the sequents (⊥ → ⊥;∅) `+ ⊥ → ⊥
and (∅;> �>) `− > �>.
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(iv1) If (Γ, A �B; ∆) `∗ C is derivable with a height of derivation at most
n, then (Γ, A; ∆, B) `∗ C is derivable with a height of derivation at
most n.

(iv2) If (Γ; ∆, A �B) `∗ C is derivable with a height of derivation at most
n, then (Γ; ∆, A) `∗ C is derivable with a height of derivation at most
n.

Proof: The proof is by induction on n.
1) If (Γ, A # B; ∆) `∗ C with # ∈ {∧,∨,→,�} is the conclusion of a zero-
premise rule, then so are (Γ, A,B; ∆) `∗ C, (Γ, A; ∆) `∗ C, (Γ, B; ∆) `∗ C,
(Γ; ∆, B) `∗ C since A # B is neither atomic nor ⊥ nor >.
Now we assume height-preserving inversion up to height n, and let
(Γ, A # B; ∆) `∗ C be derivable with a height of derivation ≤ n+ 1.

(i1) Either A ∧ B is principal in the last rule or not. If A ∧ B is the
principal formula, the premise (Γ, A,B; ∆) `∗ C has a derivation of
height n. If A ∧ B is not principal in the last rule, then there must
be one or two premises (Γ′, A ∧B; ∆′) `∗ C ′, (Γ′′, A ∧B; ∆′′) `∗ C ′′
with a height of derivation ≤ n. Then, by inductive hypothesis, also
(Γ′, A,B; ∆′) `∗ C ′, (Γ′′, A,B; ∆′′) `∗ C ′′ are derivable with a height
of derivation ≤ n. Now the last rule can be applied to these premises
to conclude (Γ, A,B; ∆) `∗ C in at most n+ 1 steps.

(ii1) Either A ∨ B is principal in the last rule or not. If A ∨ B is the
principal formula, the premises (Γ, A; ∆) `∗ C and (Γ, B; ∆) `∗ C
have a derivation of height ≤ n. If A ∨B is not principal in the last
rule, then there must be one or two premises (Γ′, A ∨ B; ∆′) `∗ C ′,
(Γ′′, A ∨ B; ∆′′) `∗ C ′′ with a height of derivation ≤ n. Then, by
inductive hypothesis, also (Γ′, A; ∆′) `∗ C ′, (Γ′, B; ∆′) `∗ C ′ and
(Γ′′, A; ∆′) `∗ C ′′, (Γ′′, B; ∆′′) `∗ C ′′ are derivable with a height
of derivation ≤ n. Now the last rule can be applied to the first and
third premise to conclude (Γ, A; ∆) `∗ C and to the second and fourth
premise to conclude (Γ, B; ∆) `∗ C in at most n+ 1 steps.

(iii1) Either A → B is principal in the last rule or not. If A → B is
the principal formula, the premise (Γ, B; ∆) `∗ C has a derivation of
height ≤ n. If A→ B is not principal in the last rule, then there must
be one or two premises (Γ′, A → B; ∆′) `∗ C ′, (Γ′′, A → B; ∆′′) `∗
C ′′ with a height of derivation ≤ n. Then, by inductive hypothesis,
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also (Γ′, B; ∆′) `∗ C ′, (Γ′′, B; ∆′′) `∗ C ′′ are derivable with a height
of derivation ≤ n. Now the last rule can be applied to these premises
to conclude (Γ, B; ∆) `∗ C in at most n+ 1 steps.

(iv1) Either A � B is principal in the last rule or not. If A � B is the
principal formula, then the premise (Γ, A; ∆, B) `∗ C has a derivation
of height n. If A�B is not principal in the last rule, then there must
be one or two premises (Γ′, A � B; ∆′) `∗ C ′, (Γ′′, A � B; ∆′′) `∗ C ′′
with a height of derivation ≤ n. Then, by inductive hypothesis, also
(Γ′, A; ∆′, B) `∗ C ′, (Γ′′, A; ∆′′, B) `∗ C ′′ are derivable with a height
of derivation ≤ n. Now the last rule can be applied to these premises
to conclude (Γ, A; ∆, B) `∗ C in at most n+ 1 steps.

2) If (Γ; ∆, A # B) `∗ C with # ∈ {∧,∨,→,�} is the conclusion of a zero-
premise rule, then so are (Γ; ∆, A) `∗ C, (Γ; ∆, B) `∗ C, (Γ; ∆, A,B) `∗ C,
(Γ, A; ∆) `∗ C since A # B is neither atomic nor ⊥ nor >.
Now we assume height-preserving inversion up to height n, and let
(Γ; ∆, A # B) `∗ C be derivable with a height of derivation ≤ n+ 1.

(i2) Either A ∧ B is principal in the last rule or not. If A ∧ B is the
principal formula, the premises (Γ; ∆, A) `∗ C and (Γ; ∆, B) `∗ C
have a derivation of height ≤ n. If A ∧ B is not principal in the
last rule, then there must be one or two premises (Γ′; ∆′, A ∧ B) `∗
C ′, (Γ′′; ∆′′, A ∧ B) `∗ C ′′ with a height of derivation ≤ n. Then,
by inductive hypothesis, also (Γ′; ∆′, A) `∗ C ′, (Γ′; ∆′, B) `∗ C ′,
(Γ′′; ∆′′, A) `∗ C ′′, (Γ′′; ∆′′, B) `∗ C ′′ are derivable with a height
of derivation ≤ n. Now the last rule can be applied to the first and
third premise to conclude (Γ; ∆, A) `∗ C and to the second and fourth
premise to conclude (Γ; ∆, B) `∗ C in at most n+ 1 steps.

(ii2) Either A ∨ B is principal in the last rule or not. If A ∨ B is the
principal formula, the premise (Γ; ∆, A,B) `∗ C has a derivation of
height n. If A ∨ B is not principal in the last rule, then there must
be one or two premises (Γ′; ∆′, A ∨B) `∗ C ′, (Γ′′; ∆′′, A ∨B) `∗ C ′′
with a height of derivation ≤ n. Then, by inductive hypothesis, also
(Γ′; ∆′, A,B) `∗ C ′, (Γ′′; ∆′′, A,B) `∗ C ′′ are derivable with a height
of derivation ≤ n. Now the last rule can be applied to these premises
to conclude (Γ; ∆, A,B) `∗ C in at most n+ 1 steps.
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(iii2) Either A → B is principal in the last rule or not. If A → B is the
principal formula, the premise (Γ, A; ∆, B) `∗ C has a derivation of
height n. If A→ B is not principal in the last rule, then there must be
one or two premises (Γ′; ∆′, A → B) `∗ C ′, (Γ′′; ∆′′, A → B) `∗ C ′′
with a height of derivation ≤ n. Then, by inductive hypothesis, also
(Γ′, A; ∆′, B) `∗ C ′, (Γ′′, A; ∆′′, B) `∗ C ′′ are derivable with a height
of derivation ≤ n. Now the last rule can be applied to these premises
to conclude (Γ, A; ∆, B) `∗ C in at most n+ 1 steps.

(iv2) Either A � B is principal in the last rule or not. If A � B is the
principal formula, the premise (Γ; ∆, A) `∗ C has a derivation of
height ≤ n. If A�B is not principal in the last rule, then there must
be one or two premises (Γ′; ∆′, A � B) `∗ C ′, (Γ′′; ∆′′, A � B) `∗ C ′′
with a height of derivation ≤ n. Then, by inductive hypothesis, also
(Γ′; ∆′, A) `∗ C ′, (Γ′′; ∆′′, A) `∗ C ′′ are derivable with a height of
derivation ≤ n. Now the last rule can be applied to these premises
to conclude (Γ; ∆, A) `∗ C in at most n+ 1 steps.

Next, we will prove the admissibility of the contraction rules in SC2Int.

Theorem 3.7 (Height-preserving contraction). If (Γ, D,D; ∆) `∗ C is
derivable with a height of derivation at most n, then (Γ, D; ∆) `∗ C is
derivable with a height of derivation at most n and if (Γ; ∆, D,D) `∗ C
is derivable with a height of derivation at most n, then (Γ; ∆, D) `∗ C is
derivable with a height of derivation at most n.

Proof: The proof is again by induction on the height of derivation n.
If (Γ, D,D; ∆) `∗ C (resp. (Γ; ∆, D,D) `∗ C) is the conclusion of a zero-
premise rule, then either C is an atom and contained in the antecedent, in
the assumptions for `+ or in the counterassumptions for `−, or ⊥ is part of
the assumptions, or > is part of the counterassumptions, or C = > for `+,
or C = ⊥ for `−. In either case, also (Γ, D; ∆) `∗ C (resp. (Γ; ∆, D) `∗ C)
is a conclusion of the respective zero-premise rule.
Let contraction be admissible up to derivation height n and let
(Γ, D,D; ∆) `∗ C (resp. (Γ; ∆, D,D) `∗ C) be derivable in at most n + 1
steps. Either the contraction formula is not principal in the last inference
step or it is principal.
If D is not principal in the last rule concluding the premise of contraction
(Γ, D,D; ∆) `∗ C, there must be one or two premises (Γ′, D,D; ∆′) `∗ C ′,
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(Γ′′, D,D; ∆′′) `∗ C ′ with a height of derivation ≤ n. So by inductive hy-
pothesis, we can derive (Γ′, D; ∆′) `∗ C ′, (Γ′′, D; ∆′′) `∗ C ′ with a height
of derivation ≤ n. Now the last rule can be applied to these premises
to conclude (Γ, D; ∆) `∗ C in at most n + 1 steps. For the case of
(Γ; ∆, D,D) `∗ C being the premise of contraction, the same argument
applies respectively.
If D is principal in the last rule, we have to consider four cases for each
contraction rule according to the form of D. We will show the cases for Cc

this time; for Ca the same arguments apply respectively.

D = A ∧ B. Then the last rule applied must be ∧Lc and we have as
premises (Γ; ∆, A∧B,A) `∗ C and (Γ; ∆, A∧B,B) `∗ C with a derivation
height ≤ n. By the inversion lemma this means that (Γ; ∆, A,A) `∗ C and
(Γ; ∆, B,B) `∗ C are also derivable with a derivation height ≤ n. Then
by inductive hypothesis, we get (Γ; ∆, A) `∗ C and (Γ; ∆, B) `∗ C with a
height of derivation ≤ n and by applying ∧Lc we can derive (Γ; ∆, A∧B) `∗
C in at most n+ 1 steps.

D = A ∨ B. Then the last rule applied must be ∨Lc and (Γ; ∆, A ∨
B,A,B) `∗ C is derivable with a height of derivation ≤ n. By the inversion
lemma, also (Γ; ∆, A,B,A,B) `∗ C is derivable with a derivation height
≤ n. Then by inductive hypothesis (applied twice), we get (Γ; ∆, A,B) `∗
C with a height of derivation ≤ n and by applying ∨Lc we can derive
(Γ; ∆, A ∨B) `∗ C in at most n+ 1 steps.

D = A→ B. Then the last rule applied must be→ Lc and accordingly
(Γ, A; ∆, B,A→ B) `∗ C is derivable with a height of derivation ≤ n. By
the inversion lemma, then also (Γ, A,A; ∆, B,B) `∗ C is derivable with
a derivation height ≤ n. By inductive hypothesis (applied twice), we get
(Γ, A; ∆, B) `∗ C with a height of derivation ≤ n and by applying → Lc

we can derive (Γ; ∆, A→ B) `∗ C in at most n+ 1 steps.

D = A � B. Then the last rule applied must be �Lc and we have
as premises (Γ; ∆, A � B,A � B) `− B and (Γ; ∆, A � B,A) `∗ C with
a derivation height ≤ n. The inductive hypothesis applied to the first,
gives us (Γ; ∆, A�B) `− B with a derivation height ≤ n and the inversion
lemma applied to the second, also (Γ; ∆, A,A) `∗ C and again by inductive
hypothesis (Γ; ∆, A) `∗ C with a derivation height ≤ n. By applying �Lc

we can now derive (Γ; ∆, A �B) `∗ C in at most n+ 1 steps.
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3.4. Admissibility of cut

Now, we will come to the main result of this section, the proof of cut-
elimination. The proof shows that cuts can be permuted upward in a
derivation until they reach one of the zero-premise rules the derivation
started with. When cut has reached zero-premise rules, the derivation can
be transformed into one beginning with the conclusion of the cut, which
can be shown by the following reasoning.

When both premises of cut are conclusions of a zero-premise rule, then
the conclusion of cut is also a conclusion of one of these rules: If the
left premise is (Γ,⊥; ∆) `∗ D, then the conclusion also has ⊥ in the as-
sumptions of the antecedent. If the left premise is (Γ; ∆,>) `∗ D, then
the conclusion also has > in the counterassumptions of the antecedent.
If the left premise of Cuta is (Γ; ∆) `+ > or the left premise of Cutc is
(Γ; ∆) `− ⊥, then the right premise is (Γ′,>; ∆′) `∗ C or (Γ′; ∆′,⊥) `∗ C
respectively. These are conclusions of zero-premise rules only in one of the
following cases:

• C is an atom in Γ′ for ∗ = + or C is an atom in ∆′ for ∗ = −

• C = > for ∗ = + or C = ⊥ for ∗ = −

• ⊥ is in Γ′ or > is in ∆′

In each case the conclusion of cut (Γ,Γ′; ∆,∆′) `∗ C is also a conclusion of
the same zero-premise rule as the right premise. The last two possibilities
are that the left premise is (Γ, p; ∆) `+ p for Cuta or (Γ; ∆, p) `− p for
Cutc respectively. For the former case this means that the right premise is
(Γ′, p; ∆′) `∗ C. This is the conclusion of a zero-premise rule only in one
of the following cases:

• For ∗ = +: C = p, or C is an atom in Γ′, or C = >

• For ∗ = −: C is an atom in ∆′, or C = ⊥

• ⊥ is in Γ′, or > is in ∆′

In each case the conclusion of cut (Γ, p,Γ′; ∆,∆′) `∗ C is also a conclusion
of the same zero-premise rule as the right premise. For the latter case this
means that the right premise is (Γ′; ∆′, p) `∗ C. This is the conclusion of
a zero-premise rule only in one of the following cases:
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• For ∗ = +: C is an atom in Γ′, or C = >

• For ∗ = −: C = p, or C is an atom in ∆′, or C = ⊥

• ⊥ is in Γ′, or > is in ∆′

In each case the conclusion of cut (Γ,Γ′; ∆, p,∆′) `∗ C is also a conclusion
of the same zero-premise rule as the right premise. So, when cut has reached
zero-premise rules as premises, the derivation can be transformed into one
beginning with the conclusion of the cut by deleting the premises.

The proof is – as before – conducted in a manner corresponding to the
proof of cut-elimination for G3ip by [10], which means that it is by induction
on the weight of the cut formula and a subinduction on the cut-height, the
sum of heights of derivations of the two premises of cut.

Definition 3.8. The cut-height of an application of one of the rules of cut
in a derivation is the sum of heights of derivation of the two premises of
the rule.

In the proof permutations are given that always reduce the weight of
the cut formula or the cut-height of instances of the rules. When the cut
formula is not principal in at least one (or both) of the premises of cut,
cut-height is reduced. In the other cases, i.e. in which the cut formula is
principal in both premises, it is shown that cut-height and/or the weight
of the cut formula can be reduced. This process terminates since atoms
cannot be principal formulas.

The difference between the height of a derivation and cut-height needs
to be emphasized here, because it is essential to understand that if there
are two instances of cut, one occurring below the other in the derivation,
this does not necessarily mean that the lower instance has a greater cut-
height than the upper. Let us suppose the upper instance of cut occurs in
the derivation of the left premise of the lower cut. The upper instance can
have a cut-height which is greater than the height of either its premises
because the sum of the premises is what matters. However, the lower
instance can have as a right premise one with a much shorter derivation
height than either of the premises of the upper cut, making the sum of the
derivation heights of those two premises lesser than the one from the upper
cut. So, what follows is that it is not enough to show that occurrences of cut
can be permuted upward in a derivation in order to show that cut-height
decreases, but we need to calculate exactly the cut-height of each derivation
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in our proof. As before, it can be assumed that in a given derivation the
last instance is the one and only occurrence of cut.

Theorem 3.9. The cut rules

(Γ; ∆) `+ D (Γ′, D; ∆′) `∗ C
(Γ,Γ′; ∆,∆′) `∗ C

Cuta and
(Γ; ∆) `− D (Γ′; ∆′, D) `∗ C

(Γ,Γ′; ∆,∆′) `∗ C
Cutc

are admissible in SC2Int.

The proof is organized as follows. First, we consider the case that at
least one premise in a cut is a conclusion of one of the zero-premise rules
and show how cut can be eliminated in these cases. Otherwise three cases
can be distinguished: 1) The cut formula is not principal in either premise
of cut, 2) the cut formula is principal in just one premise of cut, and 3) the
cut formula is principal in both premises of cut. The proof is presented in
detail in the appendix, Section 6.

Corollary 3.10. (Subformula property) If (Γ; ∆) `∗ A (∗ ∈ {+,−}) is
derivable in SC2Int, then all subformulas occurring in the derivation are
subformulas of Γ or ∆.
(Decidability) Derivability of sequents (Γ; ∆) `∗ A (∗ ∈ {+,−}) in SC2Int

is decidable.

4. Synonymy of formulas through inherited identity
between derivations

In order to define a certain notion of identity between derivations that
is inspired by the bilateralist distinction between proofs and their duals,
we consider (i) the following two negation operations defined in terms of
implication and co-implication:

¬A := A→ ⊥ (negation), −A := > �A (co-negation).

and (ii) the following rules that state an interaction between proofs and
dual proofs mediated through the two negation connectives:
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(Γ; ∆, A) `∗ B
(−A,Γ; ∆) `∗ B −ai

(−A,Γ; ∆) `∗ B
(Γ; ∆, A) `∗ B

−ae

(Γ; ∆) `− A
(Γ; ∆) `+ −A

−ci
(Γ; ∆) `+ −A
(Γ; ∆) `− A

−ce

(Γ, A; ∆) `∗ B
(Γ;¬A,∆) `∗ B ¬ai

(Γ;¬A,∆) `∗ B
(Γ, A; ∆) `∗ B

¬ae

(Γ; ∆) `+ A

(Γ; ∆) `− ¬A ¬ci
(Γ; ∆) `− ¬A
(Γ; ∆) `+ A

¬ce

One idea behind these interaction rules is that they are rules the applica-
tion of which has no effect on the identity of derivations, so that a proof of
A is a refutation of ¬A, and vice versa, and a refutation of A is a proof
of −A, and vice versa. Whereas in the case of the sequent calculus for N4 in
[18], it is possible to identify derivations of different formulas because the
strong negation marks a back and forth between proofs and refutations, in
the case of the interaction rules of the sequent calculus SCInt, derivations
of different formulas are identified because proving (refuting) A is seen as
amounting to refuting (proving) ¬A (−A). As mentioned in the introduc-
tion, we shall not delve into elaborating a motivation for this approach but
are content to apply the idea of interaction rules having no effect on the
identity of derivations to SC2Int.

The interaction rules are admissible in SC2Int:

(Γ; ∆, A) `∗ B
(Γ,>; ∆, A) `∗ B W a

(> �A,Γ; ∆) `∗ B �La

(∅;A) `+ > >R
+

(∅;A) `− A Lemma 3 .3

(∅;A) `+ > �A �R+

(> �A,Γ; ∆) `∗ B
(Γ; ∆, A) `∗ B Cuta

(Γ; ∆) `+ > >R
+

(Γ; ∆) `− A
(Γ; ∆) `+ > �A

�R+
(Γ; ∆) `+ > �A

(>;A) `− A
Lemma 3 .3

(> �A;∅) `− A
�La

(Γ; ∆) `− A
Cuta
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(Γ, A; ∆) `∗ B
(Γ, A; ∆,⊥) `∗ B W c

(Γ; ∆, A→ ⊥) `∗ B → Lc

(A;∅) `+ A
Lemma 3 .3

(A;∅) `− ⊥ ⊥R
−

(A;∅) `− A→ ⊥ → R−
(Γ;A→ ⊥,∆) `∗ B

(Γ, A; ∆) `∗ B Cutc

(Γ; ∆) `+ A (Γ; ∆) `− ⊥ ⊥R
−

(Γ; ∆) `− A→ ⊥ → R−
(Γ; ∆) `− A→ >

(A;⊥) `+ A
Lemma 3 .3

(∅;A→ ⊥) `+ A
→ Lc

(Γ; ∆) `+ A
Cutc

In what follows, we will consider SC2Int without the admissible struc-
tural rules of contraction, weakening, and cut. We use s, s1, s2, . . . to stand
for sequents. If D and D ′ are derivations in SC2Int, we shall write D ≡ D ′

to express that D and D ′ are syntactically identical (as types of expressions,
not as tokens).

Definition 4.1. The relation ≈ of inherited identity (in-identity) between
derivations D1 and D2 in SC2Int is defined inductively. It is the smallest
binary relation on the set of derivations in SC2Int such that:

1. D1 ≈ D2 if D1 ≡ D2.

2. D1 ≈ D2 if either D1 ≈ D and D2 ≡ D
s

or D2 ≈ D and D1 ≡ D
s

, where

s is obtained from D by an application of an (instance of an) interaction
rule.

3. D1 ≈ D2 if D1 ≡ D1
1 . . .D

1
n

s1
, D2 ≡ D2

1 . . .D
2
n

s2
, and D1

i ≈ D2
i (1 ≤ i ≤

n ≤ 2).

As in [18] it can be shown that the relation ≈ is an equivalence rela-
tion. Note that the third clause of Definition 4.1 allows one to identify,
for example, proofs of (A ∨ B) and (A ∨ C), which is in accordance with
the Brouwer-Heyting-Kolmogorov interpretation allowing for one and the
same construction being a proof of both (A ∨ B) and (A ∨ C). Moreover,
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it is obvious that not any two cut-free derivations D1 and D2 in SC2Int

of a formula A are in-identical. There are, e.g., syntactically distinct cut-
free derivations of the sequent (∅;∅) `+ (p ∧ q) → (p ∨ q) that are not
in-identical. We shall give examples of in-identical derivations in the proof
of Proposition 4.3.

Definition 4.2. Two formulas A and B are said to be synonymous with
respect to SC2Int iff

1. (positive condition) there exists a derivation D of (A;∅) `+ B and
a derivation D ′ of (B;∅) `+ A with D ≈ D ′,

2. (negative condition) there exists a derivation D of (∅;A) `− B and
a derivation D ′ of (∅;B) `− A with D ≈ D ′.

If the positive (negative) condition is satisfied, A and B are said to be
positively (negatively) synonymous.

Accomplishing the interaction between proofs and refutations by means
of two different negation connectives instead of a single strong negation,
∼, as in the sequent calculus SN4 from [18], has a considerable effect on
the notion of synonymy stated in Definition 4.2. While in N4 all double
negation and De Morgan laws hold and, for example, the following pairs of
formulas turn out to be synonymous with respect to cut-free SN4

1. p and ∼∼p,

2. (p ∧ q) and ∼(∼p ∨ ∼q),

3. (p ∨ q) and ∼(∼p ∧ ∼q),

not all double negation and De Morgan laws hold for ¬ and − in SC2Int.
We can observe a number of cases of positive or negative synonymy with
respect to SC2Int.

Proposition 4.3. The following pairs of formulas are positively synony-
mous with respect to SC2Int:

1. p and −¬p,

2. −(p→ q) and (p ∧ −q),

3. −(¬p ∨ q) and (p ∧ −q),

4. −(p→ q) and −(¬p ∨ q),
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whereas the following pairs are negatively synonymous:

5. p and ¬ − p,

6. ¬(p � q) and (¬p ∨ q),

7. ¬(p ∧ −q) and (¬p ∨ q),

8. ¬(p � q) and ¬(p ∧ −q).

Proof: 1. and 5.: The following pairs of derivations are in-identical by
the first clause of Definition 4.1:

(p;∅) `+ p

(p;∅) `− ¬p ¬ci

(p;∅) `+ −¬p
−ci

(p;∅) `+ p

(∅;¬p) `+ p
¬ai

(−¬p;∅) `+ p
−ai

(∅; p) `− p
(∅, p) `+ −p

−ci

(∅; p) `− ¬ − p ¬ci

(∅; p) `− p
(−p;∅) `− p

−ai

(∅;¬ − p) `− p ¬ai

2. We shall demonstrate the in-identity of the following two derivations in
detail. The demonstration for the cases 3., 6., and 7. is similar and left to
the reader.

(p; q) `+ p

(∅; (p→ q)) `+ p

(−(p→ q);∅) `+ p

(p; q) `− q

(∅; (p→ q)) `− q

(−(p→ q); ∅) `− q

(−(p→ q);∅) `+ −q

(−(p→ q);∅) `+ (p ∧ −q)

(p; q) `+ p

(p,−q;∅) `+ p

((p ∧ −q); ∅) `+ p

(p; q) `− q

(p,−q;∅) `− q

((p ∧ −q);∅) `− q

((p ∧ −q);∅) `− (p→ q)

((p ∧ −q);∅) `+ −(p→ q)

Let D1 and D2 be the derivations

(p; q) `+ p

(∅; (p→ q)) `+ p
and

(p; q) `+ p

(p,−q;∅) `+ p

and let D3 and D4 be the derivations

D1

(−(p→ q);∅) `+ p
and

D2

(p ∧ −q);∅) `+ p.

By clauses 1. and 3. of Definition 4.1, D1 ≈ D2, and by clause 3. of
Definition 4.1, D3 ≈ D4. Let D5 and D6 be the derivations
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(p; q) `− q
(∅; (p→ q)) `− q

and
(p; q) `− q

(p,−q;∅) `− q

and let D7 and D8 be the derivations

D5

(−(p→ q);∅) `− q
(−(p→ q);∅) `+ −q

and
D6

(p ∧ −q);∅) `− q.

By clauses 1. and 3. of Definition 4.1, D5 ≈ D6, and by clauses 3. and 2.
of Definition 4.1, D7 ≈ D8. Then, by clause 3. of Definition 4.1, we obtain
that for the derivations D9 and D10, namely,

D3 D7

(−(p→ q);∅) `+ (p ∧ −q) and
D4 D8

(p ∧ −q);∅) `− (p→ q)

it holds that D9 ≈ D10. Let D11 be

D10

(p ∧ −q);∅) `+ −(p→ q).

By clause 2. of Definition 4.1, D9 ≈ D11.
3.:

(p; q) `+ p

(∅;¬p, q) `+ p

(∅; (¬p ∨ q)) `+ p

(−(¬p ∨ q);∅) `+ p

(p; q) `− q

(∅;¬p, q) `− q

(∅; (¬p ∨ q)) `− q

(−(¬p ∨ q);∅) `− q

(−(¬p ∨ q); ∅) `+ −q

(−(¬p ∨ q);∅) `+ (p ∧ −q)

≈

(p; q) `+ p

((p,−q);∅) `+ p

((p ∧ −q);∅) `+ p

((p ∧ −q);∅) `− ¬p

(p; q) `− q

(p,−q; ∅) `− q

((p ∧ −q);∅) `− q

((p ∧ −q);∅) `− (¬p ∨ q)

((p ∧ −q);∅) `+ −(¬p ∨ q)

4.: By 2., 3., and the transitivity of ≈.
6.:

(p; q)) `+ p

((p � q);∅) `+ p

(∅;¬(p � q)) `+ p

(∅;¬(p � q)) `− ¬p

(p; q) `− q
((p � q);∅) `− q

(∅;¬(p � q)) `− q
(∅;¬(p � q)) `− (¬p ∨ q)

≈

(p; q) `+ p

(∅;¬p, q) `+ p

(∅; (¬p ∨ q)) `+ p

(p; q) `− q
(∅;¬p, q) `− q

(∅; (¬p ∨ q)) `− q
(∅; (¬p ∨ q)) `+ (p � q)

(∅; (¬p ∨ q)) `− ¬(p � q)
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7.:

(p; q) `+ p

(p,−q;∅) `+ p

((p ∧ −q);∅) `+ p

(∅;¬(p ∧ −q)) `+ p

(∅;¬(p ∧ −q)) `− ¬p

(p; q) `− q
(p,−q;∅) `− q

((p ∧ −q);∅) `− q
(∅;¬(p ∧ −q)) `− q

(∅;¬(p ∧ −q)) `− (¬p ∨ q)

≈

(p; q) `+ p

(∅;¬p, q) `+ p

(∅; (¬p ∨ q)) `+ p

(p; q) `− q
(∅;¬p, q) `− q

(∅; (¬p ∨ q)) `− q
(∅; (¬p ∨ q)) `+ −q

(∅; (¬p ∨ q)) `+ (p ∧ −q)
(∅; (¬p ∨ q)) `− ¬(p ∧ −q)

8.: By 6., 7., and the transitivity of ≈.

Since we have not been able to find pairs of distinct formulas in the
language of 2Int that are synonymous with respect to SC2Int in the sense
of Definition 4.2, we are led to conjecture that there are no such pairs of
formulas.

Conjecture 4.4. There exist no two distinct formulas A, B in the lan-
guage of 2Int that are synonymous with respect to SC2Int in the sense of
Definition 4.2.

If that conjecture is true, then synonymy based on in-identity with respect
to SC2Int trivializes in the sense that it seems to be an empty concept.
However, this is neither really surprising if we reconsider the differences
between 2Int and N4 nor does it have to be seen as a defect of in-identity
or SC2Int. While in N4 there is one negation, which is firstly primitive and
secondly serves as a toggle between proofs and refutations, in 2Int we have
two negations, which are mere results from having two implications, which
in turn are the object language manifestation of having two derivability
relations. With that in mind it does not seem odd that there are no two
(distinct) synonymous formulas interderivable w.r.t. to both derivability re-
lations. After all, the interaction rules solely work with the two negations
but do not allow a ‘toggling’ back and forth between proofs and refutations.
So, in order to get an interderivability w.r.t. the positively signed derivabil-
ity relation using the interaction rules, it seems that we will always have to
use the −ci and the −ai rule as the last interaction rules in the derivation.
This is not to say that one of them has to be the very last rule applied in
the derivation and also not to say that other interaction rules cannot ap-
pear within the derivation. As we see in the exemplary derivations above,
of course, the very last rule can be a normal operational rule and of course,
there can be other interaction rules like the ones for ¬. But the last of the
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interaction rules to occur, must always be −ci and −ai (the order between
those two does not matter). This is just because if interaction rules are
to be used, then these are the ones getting a formula into the assumptions
and switching the derivability relation from − to +, which is the result we
need for derivations of the form (A;∅) `+ B and (B;∅) `+ A. The same
holds for interderivability w.r.t. the negatively signed derivability relation
and the use of the interaction rules ¬ai and ¬ci. Since applying these
rules results in different formulas, though, namely in formulas having −,
resp. ¬ as main operator, it simply does not seem possible to have both
interderivabilities for the same pair of formulas.

So, this result can be regarded as an interesting consequence of the
basics of SC2Int because what we obtain by having bilateralist concepts
also overtly realized in the connectives is an exclusive division between
positive and negative synonymy. It highlights the bilateralist principle of
verifications (proofs) and falsifications (refutations) being two primitive
kinds of derivations in their own right.

5. Conclusion and outlook

By applying the proof methods that [10] use for their calculus G3ip, we were
able to show the admissibility of the structural rules of weakening, contrac-
tion, and cut in the sequent calculus SC2Int for the bi-intuitionistic logic
2Int. With SC2Int at hand, we could apply the definition of inherited iden-
tity of derivations from [18] to define the notion of propositional synonymy
of formulas with respect to SC2Int as the combination of two concepts of
positive and negative synonymy. We were able to present various pairs of
distinct formulas that are either positively or negatively synonymous with
respect to SC2Int, and we conjectured that there exist no pairs of distinct
formulas that are both positively and negatively synonymous with respect
to SC2Int.

An obvious task is to decide Conjecture 4.4. Moreover, as already in-
dicated in [18], it would be interesting to encode derivations in a bilateral
sequent calculus that accommodates proofs as well as refutations, such as
SC2Int, in a suitable two-sorted typed λ-calculus with terms of one sort
denoting proofs and terms of a second sort denoting dual proofs, refuta-
tions. This is currently work in progress by one of the authors (cf. [2]).
There, it will be pondered what other ways of understanding the concept
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of identity between proofs and refutations are available and sensible in the
light of identifying lambda-term constructions.
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6. Appendix

We present a proof of Theorem 3.9 by considering the mentioned case
distinction.

Cut with a conclusion of a zero-premise rule as premise

Cut with a conclusion of Rf+, Rf−, ⊥La, >Lc,⊥R−, or >R+ as
premise

If at least one of the premises of cut is a conclusion of one of the zero-
premise rules, we distinguish three cases for both cut rules:

-1- Cuta

-1.1- The left premise (Γ; ∆) `+ D is a conclusion of a zero-premise-rule.
There are four subcases:

(a) The cut formula D is an atom in Γ. Then the conclusion
(Γ,Γ′; ∆,∆′) `∗ C is derived from (Γ′, D; ∆′) `∗ C by W a and
W c.

(b) ⊥ is a formula in Γ. Then (Γ,Γ′; ∆,∆′) `∗ C is also a conclusion
of ⊥La.

(c) > is a formula in ∆. Then (Γ,Γ′; ∆,∆′) `∗ C is also a conclusion
of >Lc.

(d) > = D. Then the right premise is (Γ′,>; ∆′) `∗ C and
(Γ,Γ′; ∆,∆′) `∗ C follows by W>inv as well as W a and W c.
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-1.2- The right premise (Γ′, D; ∆′) `+ C is a conclusion of a zero-premise
rule. There are six subcases:

(a) C is an atom in Γ′. Then (Γ,Γ′; ∆,∆′) `+ C is also a conclusion
of Rf+.

(b) C =D. Then the left premise is (Γ; ∆) `+ C and (Γ,Γ′; ∆,∆′) `+
C follows by W a and W c.

(c) ⊥ is in Γ′. Then (Γ,Γ′; ∆,∆′) `+ C is also a conclusion of ⊥La.

(d) ⊥ = D. Then the left premise is (Γ; ∆) `+ ⊥ and is either a
conclusion of ⊥La or >Lc (in which case cf. 1.1 (b) or 1.1 (c)) or
it has been derived by a left rule. There are eight cases according
to the rule used which can be transformed into derivations with
lesser cut-height. We will not show this here, since this is only
a special case of the cases 3.1-3.8 below.

(e) > is in ∆′. Then (Γ,Γ′; ∆,∆′) `+ C is also a conclusion of >Lc.

(f) > = C. Then (Γ,Γ′; ∆,∆′) `+ C is also a conclusion of >R+.

-1.3- The right premise (Γ′, D; ∆′) `− C is a conclusion of a zero-premise
rule. There are five subcases:

(a) C is an atom in ∆′. Then (Γ,Γ′; ∆,∆′) `− C is also a conclusion
of Rf−.

(b) ⊥ is in Γ′. Then (Γ,Γ′; ∆,∆′) `− C is also a conclusion of ⊥La.

(c) ⊥ = D. Then the left premise is (Γ; ∆) `+ ⊥ and the same as
mentioned in 1.2 (d) holds.

(d) > is in ∆′. Then (Γ,Γ′; ∆,∆′) `− C is also a conclusion of >Lc.

(e) ⊥ = C. Then (Γ,Γ′; ∆,∆′) `− C is also a conclusion of ⊥R−.

-2- Cutc

-2.1- The left premise (Γ; ∆) `− D is a conclusion of a zero-premise rule.
There are four subcases:

(a) The cut formula D is an atom in ∆. Then the conclusion
(Γ,Γ′; ∆,∆′) `∗ C is derived from (Γ′; ∆′, D) `∗ C by W a and
W c.



218 Sara Ayhan, Heinrich Wansing

(b) ⊥ is in Γ. Then (Γ,Γ′; ∆,∆′) `∗ C is also a conclusion of ⊥La.

(c) > is in ∆. Then (Γ,Γ′; ∆,∆′) `∗ C is also a conclusion of >Lc.

(d) ⊥ = D. Then the right premise is (Γ′; ∆′,⊥) `∗ C and
(Γ,Γ′; ∆,∆′) `∗ C follows by W⊥inv as well as W a and W c.

-2.2- The right premise (Γ′; ∆′, D) `+ C is a conclusion of a zero-premise
rule. There are five subcases:

(a) C is an atom in Γ′. Then (Γ,Γ′; ∆,∆′) `+ C is also a conclusion
of Rf+.

(b) ⊥ is in Γ′. Then (Γ,Γ′; ∆,∆′) `+ C is also a conclusion of ⊥La.

(c) > is in ∆′. Then (Γ,Γ′; ∆,∆′) `+ C is also a conclusion of >Lc.

(d) > = D. Then the left premise is (Γ; ∆) `− > and the same as
mentioned in 1.2 (d) holds.

(e) > = C. Then (Γ,Γ′; ∆,∆′) `+ C is also a conclusion of >R+.

-2.3- The right premise (Γ′; ∆′, D) `− C is a conclusion of a zero-premise
rule. There are six subcases:

(a) C is an atom in ∆′. Then (Γ,Γ′; ∆,∆′) `− C is also a conclusion
of Rf−.

(b) C =D. Then the left premise is (Γ; ∆) `− C and (Γ,Γ′; ∆,∆′) `−
C follows by W a and W c.

(c) ⊥ is in Γ′. Then (Γ,Γ′; ∆,∆′) `− C is also a conclusion of ⊥La.

(d) > is in ∆′. Then (Γ,Γ′; ∆,∆′) `− C is also a conclusion of >Lc.

(e) > = D. Then the left premise is (Γ; ∆) `− > and the same as
mentioned in 1.2 (d) holds.

(f) ⊥ = C. Then (Γ,Γ′; ∆,∆′) `− C is also a conclusion of ⊥R−.

Cut with neither premise a conclusion of a zero-premise rule

We distinguish the cases that a left rule is used to derive the left premise
(cf. 3), a right rule is used to derive the left premise (cf. 5), a right or a
left rule is used to derive the right premise with the cut formula not being
principal there (cf. 4), and that a left rule is used to derive the right premise
with the cut formula being principal (cf. 5). These cases can be subsumed
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in a more compact form as categorized below. We assume, like [10], that in
the derivations the topsequents, from left to right, have derivation heights
n, m, k,...

-3- Cut not principal in the left premise

If the cut formula D is not principal in the left premise, this means that
this premise is derived by a left introduction rule. By permuting the order
of the rules for the logical connectives with the cut rules, cut-height can be
reduced in each of the following eight cases:

-3.1- ∧La is the last rule used to derive the left premise with Γ = Γ′′, A∧B.
The derivations for Cuta and Cutc with cuts of cut-height n+ 1 +m
are

(Γ′′, A,B; ∆) `+ D

(Γ′′, A ∧B; ∆) `+ D
∧La

(Γ′, D; ∆′) `∗ C
(Γ′′, A ∧B,Γ′; ∆,∆′) `∗ C

Cuta

(Γ′′, A,B; ∆) `− D
(Γ′′, A ∧B; ∆) `− D

∧La

(Γ′; ∆′, D) `∗ C
(Γ′′, A ∧B,Γ′; ∆,∆′) `∗ C

Cutc

These can be transformed into derivations with cuts of cut-height
n+m:

(Γ′′, A,B; ∆) `+ D (Γ′, D; ∆′) `∗ C

(Γ′′, A,B,Γ′; ∆, ∆′) `∗ C
Cuta

(Γ′′, A ∧ B,Γ′; ∆,∆′) `∗ C
∧La

(Γ′′, A,B; ∆) `− D (Γ′; ∆′, D) `∗ C

(Γ′′, A,B,Γ′; ∆, ∆′) `∗ C
Cutc

(Γ′′, A ∧ B,Γ′; ∆,∆′) `∗ C
∧La

-3.2- ∧Lc is the last rule used to derive the left premise with ∆ = ∆′′, A∧B.
The derivations with cuts of cut-height max(n,m) + 1 + k are

(Γ; ∆′′, A) `+ D (Γ; ∆′′, B) `+ D

(Γ; ∆′′, A ∧B) `+ D
∧Lc

(Γ′, D; ∆′) `∗ C
(Γ,Γ′; ∆′′, A ∧B,∆′) `∗ C

Cuta

(Γ; ∆′′, A) `− D (Γ; ∆′′, B) `− D
(Γ; ∆′′, A ∧B) `− D

∧Lc

(Γ′; ∆′, D) `∗ C
(Γ,Γ′; ∆′′, A ∧B,∆′) `∗ C

Cutc
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These can be transformed into derivations each with two cuts of cut-
height n+ k and m+ k, respectively:

(Γ; ∆′′, A) `+ D (Γ′, D; ∆′) `∗ C
(Γ,Γ′; ∆′′, A,∆′) `∗ C

Cuta
(Γ; ∆′′, B) `+ D (Γ′, D; ∆′) `∗ C

(Γ,Γ′; ∆′′, B,∆′) `∗ C
Cuta

(Γ,Γ′; ∆′′, A ∧B,∆′) `∗ C
∧Lc

(Γ; ∆′′, A) `− D (Γ′; ∆′, D) `∗ C
(Γ,Γ′; ∆′′, A,∆′) `∗ C

Cutc
(Γ; ∆′′, B) `− D (Γ′; ∆′, D) `∗ C

(Γ,Γ′; ∆′′, B,∆′) `∗ C
Cutc

(Γ,Γ′; ∆′′, A ∧B,∆′) `∗ C
∧Lc

-3.3- ∨La is the last rule used to derive the left premise with Γ = Γ′′, A∨B.
The derivations with cuts of cut-height max(n,m) + 1 + k are

(Γ′′, A; ∆) `+ D (Γ′′, B; ∆) `+ D

(Γ′′, A ∨B; ∆) `+ D
∨La

(Γ′, D; ∆′) `∗ C
(Γ′′, A ∨B,Γ′; ∆,∆′) `∗ C

Cuta

(Γ′′, A; ∆) `− D (Γ′′, B; ∆) `− D
(Γ′′, A ∨B; ∆) `− D

∨La

(Γ′; ∆′, D) `∗ C
(Γ′′, A ∨B,Γ′; ∆,∆′) `∗ C

Cutc

These can be transformed into derivations each with two cuts of cut-
height n+ k and m+ k, respectively:

(Γ′′, A; ∆) `+ D (Γ′, D; ∆′) `∗ C
(Γ′′, A,Γ′; ∆,∆′) `∗ C

Cuta
(Γ′′, B; ∆) `+ D (Γ′, D; ∆′) `∗ C

(Γ′′, B,Γ′; ∆,∆′) `∗ C
Cuta

(Γ′′, A ∨B,Γ′; ∆,∆′) `∗ C
∨La

(Γ′′, A; ∆) `− D (Γ′; ∆′, D) `∗ C
(Γ′′, A,Γ′; ∆,∆′) `∗ C

Cutc
(Γ′′, B; ∆) `− D (Γ′; ∆′, D) `∗ C

(Γ′′, B,Γ′; ∆,∆′) `∗ C
Cutc

(Γ′′, A ∨B,Γ′; ∆,∆′) `∗ C
∨La

-3.4- ∨Lc is the last rule used to derive the left premise with ∆ = ∆′′, A∨B.
The derivations with cuts of cut-height n+ 1 +m are

(Γ; ∆′′, A,B) `+ D

(Γ; ∆′′, A ∨B) `+ D
∨Lc

(Γ′, D; ∆′) `∗ C
(Γ,Γ′; ∆′′, A ∨B,∆′) `∗ C

Cuta
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(Γ; ∆′′, A,B) `− D
(Γ; ∆′′, A ∨B) `− D

∨Lc

(Γ′; ∆′, D) `∗ C
(Γ,Γ′; ∆′′, A ∨B,∆′) `∗ C

Cutc

These can be transformed into derivations with cuts of cut-height
n+m:

(Γ; ∆′′, A,B) `+ D (Γ′, D; ∆′) `∗ C

(Γ,Γ′; ∆′′, A,B,∆′) `∗ C
Cuta

(Γ,Γ′; ∆′′, A ∨ B,∆′) `∗ C
∨Lc

(Γ; ∆′′, A,B) `− D (Γ′; ∆′, D) `∗ C

(Γ,Γ′; ∆′′, A,B,∆′) `∗ C
Cutc

(Γ,Γ′; ∆′′, A ∨ B,∆′) `∗ C
∨Lc

-3.5- → La is the last rule used to derive the left premise with Γ = Γ′′, A→
B. The derivations with cuts of cut-height max(n,m) + 1 + k are

(Γ′′, A→ B; ∆) `+ A (Γ′′, B; ∆) `+ D

(Γ′′, A→ B; ∆) `+ D
→La

(Γ′, D; ∆′) `∗ C
(Γ′′, A→ B,Γ′; ∆,∆′) `∗ C

Cuta

(Γ′′, A→ B; ∆) `+ A (Γ′′, B; ∆) `− D
(Γ′′, A→ B; ∆) `− D

→La

(Γ′; ∆′, D) `∗ C
(Γ′′, A→ B,Γ′; ∆,∆′) `∗ C

Cutc

These can be transformed into derivations with cuts of cut-height
m+ k:

(Γ′′, A→ B; ∆) `+ A

(Γ′′, A→ B,Γ′; ∆,∆′) `+ A
Wa/c

(Γ′′, B; ∆) `+ D (Γ′, D; ∆′) `∗ C
(Γ′′, B,Γ′; ∆,∆′) `∗ C

Cuta

(Γ′′, A→ B,Γ′; ∆,∆′) `∗ C
→La

(Γ′′, A→ B; ∆) `+ A

(Γ′′, A→ B,Γ′; ∆,∆′) `+ A
Wa/c

(Γ′′, B; ∆) `− D (Γ′; ∆′, D) `∗ C
(Γ′′, B,Γ′; ∆,∆′) `∗ C

Cutc

(Γ′′, A→ B,Γ′; ∆,∆′) `∗ C
→La

-3.6- → Lc is the last rule used to derive the left premise with ∆ = ∆′′, A→
B. The derivations with cuts of cut-height n+ 1 +m are

(Γ, A; ∆′′, B) `+ D

(Γ; ∆′′, A→ B) `+ D
→Lc

(Γ′, D; ∆′) `∗ C
(Γ,Γ′; ∆′′, A→ B,∆′) `∗ C

Cuta
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(Γ, A; ∆′′, B) `− D
(Γ; ∆′′, A→ B) `− D

→Lc

(Γ′; ∆′, D) `∗ C
(Γ,Γ′; ∆′′, A→ B,∆′) `∗ C

Cutc

These can be transformed into derivations with cuts of cut-height
n+m:

(Γ, A; ∆′′, B) `+ D (Γ′, D; ∆′) `∗ C

(Γ, A,Γ′; ∆′′, B,∆′) `∗ C
Cuta

(Γ, Γ′; ∆′′, A→ B,∆′) `∗ C
→Lc

(Γ, A; ∆′′, B) `− D (Γ′; ∆′, D) `∗ C

(Γ, A,Γ′; ∆′′, B,∆′) `∗ C
Cutc

(Γ, Γ′; ∆′′, A→ B,∆′) `∗ C
→Lc

-3.7- �La is the last rule used to derive the left premise with Γ = Γ′′, A�B.
The derivations with cuts of cut-height n+ 1 +m are

(Γ′′, A; ∆, B) `+ D

(Γ′′, A �B; ∆) `+ D
�La

(Γ′, D; ∆′) `∗ C
(Γ′′, A �B,Γ′; ∆,∆′) `∗ C

Cuta

(Γ′′, A; ∆, B) `− D
(Γ′′, A �B; ∆) `− D

�La

(Γ′; ∆′, D) `∗ C
(Γ′′, A �B,Γ′; ∆,∆′) `∗ C

Cutc

These can be transformed into derivations with cuts of cut-height
n+m:

(Γ′′, A; ∆, B) `+ D (Γ′, D; ∆′) `∗ C

(Γ′′, A,Γ′; ∆, B,∆′) `∗ C
Cuta

(Γ′′, A � B,Γ′; ∆,∆′) `∗ C
�La

(Γ′′, A; ∆, B) `− D (Γ′; ∆′, D) `∗ C

(Γ′′, A,Γ′; ∆, B,∆′) `∗ C
Cutc

(Γ′′, A � B,Γ′; ∆,∆′) `∗ C
�La

-3.8- �Lc is the last rule used to derive the left premise with ∆ = ∆′′, A�B.
The derivations with cuts of cut-height max(n,m) + 1 + k are

(Γ; ∆′′, A �B) `− B (Γ; ∆′′, A) `+ D

(Γ; ∆′′, A �B) `+ D
�Lc

(Γ′, D; ∆′) `∗ C
(Γ,Γ′; ∆′′, A �B,∆′) `∗ C

Cuta

(Γ; ∆′′, A �B) `− B (Γ; ∆′′, A) `− D
(Γ; ∆′′, A �B) `− D

�Lc

(Γ′; ∆′, D) `∗ C
(Γ,Γ′; ∆′′, A �B,∆′) `∗ C

Cutc
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These can be transformed into derivations with cuts of cut-height
m+ k:

(Γ; ∆′′, A �B) `− B
(Γ,Γ′; ∆′′, A �B,∆′) `− B

Wa/c
(Γ; ∆′′, A) `+ D (Γ′, D; ∆′) `∗ C

(Γ,Γ′; ∆′′, A,∆′) `∗ C
Cuta

(Γ,Γ′; ∆′′, A �B,∆′) `∗ C
�Lc

(Γ; ∆′′, A �B) `− B
(Γ,Γ′; ∆′′, A �B,∆′) `− B

Wa/c
(Γ; ∆′′A) `− D (Γ′; ∆′, D) `∗ C

(Γ,Γ′; ∆′′, A,∆′) `∗ C
Cutc

(Γ,Γ′; ∆′′, A �B,∆′) `∗ C
�Lc

As said above, cut-height is reduced in all cases.

-4- Cut formula D principal in the left premise only

The cases distinguished here concern the way the right premise is derived.
We can distinguish 16 cases and show for each case that the derivation of
the right premise can be transformed into one containing only occurrences
of cut with a reduced cut-height.

-4.1- ∧La is the last rule used to derive the right premise with Γ′ = Γ′′, A∧
B. The derivations with cuts of cut-height n+m+ 1 are

(Γ; ∆) `+ D

(Γ′′, A,B,D; ∆′) `∗ C
(Γ′′, A ∧B,D; ∆′) `∗ C

∧La

(Γ,Γ′′, A ∧B; ∆,∆′) `∗ C
Cuta

(Γ; ∆) `− D
(Γ′′, A,B; ∆′, D) `∗ C

(Γ′′, A ∧B; ∆′, D) `∗ C
∧La

(Γ,Γ′′, A ∧B; ∆,∆′) `∗ C
Cutc

These can be transformed into derivations with cuts of cut-height
n+m:

(Γ; ∆) `+ D (Γ′′, A,B,D; ∆′) `∗ C

(Γ,Γ′′, A,B; ∆,∆′) `∗ C
Cuta

(Γ, Γ′′, A ∧ B; ∆, ∆′) `∗ C
∧La

(Γ; ∆) `− D (Γ′′, A,B; ∆′, D) `∗ C

(Γ,Γ′′, A,B; ∆,∆′) `∗ C
Cutc

(Γ, Γ′′, A ∧ B; ∆, ∆′) `∗ C
∧La

-4.2- ∧Lc is the last rule used to derive the right premise with ∆′ = ∆′′, A∧
B. The derivations with cuts of cut-height n+max(m, k) + 1 are

(Γ; ∆) `+ D

(Γ′, D; ∆′′, A) `∗ C (Γ′, D; ∆′′, B) `∗ C
(Γ′, D; ∆′′, A ∧B) `∗ C

∧Lc

(Γ,Γ′; ∆,∆′′, A ∧B) `∗ C
Cuta
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(Γ; ∆) `− D
(Γ′; ∆′′, A,D) `∗ C (Γ′; ∆′′, B,D) `∗ C

(Γ′; ∆′′, A ∧B,D) `∗ C
∧Lc

(Γ,Γ′; ∆,∆′′, A ∧B) `∗ C
Cutc

These can be transformed into derivations each with two cuts of cut-
height n+m and n+ k, respectively:

(Γ; ∆) `+ D (Γ′, D; ∆′′, A) `∗ C
(Γ,Γ′; ∆,∆′′, A) `∗ C

Cuta
(Γ; ∆) `+ D (Γ′, D; ∆′′, B) `∗ C

(Γ,Γ′; ∆,∆′′, B) `∗ C
Cuta

(Γ,Γ′; ∆,∆′′, A ∧B) `∗ C
∧Lc

(Γ; ∆) `− D (Γ′; ∆′′, A,D) `∗ C
(Γ,Γ′; ∆,∆′′, A) `∗ C

Cutc
(Γ; ∆) `− D (Γ′; ∆′′, B,D) `∗ C

(Γ,Γ′; ∆,∆′′, B) `∗ C
Cutc

(Γ,Γ′; ∆,∆′′, A ∧B) `∗ C
∧Lc

-4.3- ∨La is the last rule used to derive the right premise with Γ′ = Γ′′, A∨
B. The derivations with cuts of cut-height n+max(m, k) + 1 are

(Γ; ∆) `+ D

(Γ′′, A,D; ∆′) `∗ C (Γ′′, B,D; ∆′) `∗ C
(Γ′′, A ∨B,D; ∆′) `∗ C

∨La

(Γ,Γ′′, A ∨B; ∆,∆′) `∗ C
Cuta

(Γ; ∆) `− D
(Γ′′, A; ∆′, D) `∗ C (Γ′′, B; ∆′, D) `∗ C

(Γ′′, A ∨B; ∆′, D) `∗ C
∨La

(Γ,Γ′′, A ∨B; ∆,∆′) `∗ C
Cutc

These can be transformed into derivations each with two cuts of cut-
height n+m and n+ k, respectively:

(Γ; ∆) `+ D (Γ′′, A,D; ∆′) `∗ C
(Γ,Γ′′, A; ∆,∆′) `∗ C

Cuta
(Γ; ∆) `+ D (Γ′′, B,D; ∆′) `∗ C

(Γ,Γ′′, B; ∆,∆′) `∗ C
Cuta

(Γ,Γ′′, A ∨B; ∆,∆′) `∗ C
∨La

(Γ; ∆) `− D (Γ′′, A; ∆′, D) `∗ C
(Γ,Γ′′, A; ∆,∆′) `∗ C

Cutc
(Γ; ∆) `− D (Γ′′, B; ∆′, D) `∗ C

(Γ,Γ′′, B; ∆,∆′) `∗ C
Cutc

(Γ,Γ′′, A ∨B; ∆,∆′) `∗ C
∨La

-4.4- ∨Lc is the last rule used to derive the right premise with ∆′ = ∆′′, A∨
B. The derivations with cuts of cut-height n+m+ 1 are

(Γ; ∆) `+ D

(Γ′, D; ∆′′, A,B) `∗ C
(Γ′, D; ∆′′, A ∨B) `∗ C

∨Lc

(Γ,Γ′; ∆,∆′′, A ∨B) `∗ C
Cuta
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(Γ; ∆) `− D
(Γ′; ∆′′, A,B,D) `∗ C

(Γ′; ∆′′, A ∨B,D) `∗ C
∨Lc

(Γ,Γ′; ∆,∆′′, A ∨B) `∗ C
Cutc

These can be transformed into derivations with cuts of cut-height
n+m:

(Γ; ∆) `+ D (Γ′, D; ∆′′, A,B) `∗ C

(Γ,Γ′; ∆,∆′′, A,B) `∗ C
Cuta

(Γ,Γ′; ∆,∆′′A ∨ B) `∗ C
∨Lc

(Γ; ∆) `− D (Γ′; ∆′′, A,B,D) `∗ C

(Γ,Γ′; ∆,∆′′, A,B) `∗ C
Cutc

(Γ,Γ′; ∆,∆′′, A ∨ B) `∗ C
∨Lc

-4.5- → La is the last rule used to derive the right premise with Γ′ =
Γ′′, A→ B. The derivations with cuts of cut-height n+max(m, k)+1
are

(Γ; ∆) `+ D

(Γ′′, A→ B,D; ∆′) `+ A (Γ′′, B,D; ∆′) `∗ C
(Γ′′, A→ B,D; ∆′) `∗ C

→La

(Γ,Γ′′, A→ B; ∆,∆′) `∗ C
Cuta

(Γ; ∆) `− D
(Γ′′, A→ B; ∆′, D) `+ A (Γ′′, B; ∆′, D) `∗ C

(Γ′′, A→ B; ∆′, D) `∗ C
→La

(Γ,Γ′′, A→ B; ∆,∆′) `∗ C
Cutc

These can be transformed into derivations each with two cuts of cut-
height n+m and n+ k, respectively:

(Γ; ∆) `+ D (Γ′′, A→ B,D; ∆′) `+ A

(Γ,Γ′′, A→ B; ∆,∆′) `+ A
Cuta

(Γ; ∆) `+ D (Γ′′, B,D; ∆′) `∗ C

(Γ,Γ′′, B; ∆,∆′) `∗ C
Cuta

(Γ,Γ′′, A→ B; ∆,∆′) `∗ C
→La

(Γ; ∆) `− D (Γ′′, A→ B; ∆′, D) `+ A

(Γ,Γ′′, A→ B; ∆,∆′) `+ A
Cutc

(Γ; ∆) `− D (Γ′′, B; ∆′, D) `∗ C

(Γ,Γ′′, B; ∆,∆′) `∗ C
Cutc

(Γ,Γ′′, A→ B; ∆,∆′) `∗ C
→La

-4.6- → Lc is the last rule used to derive the right premise with ∆′ =
∆′′, A→ B. The derivations with cuts of cut-height n+m+ 1 are

(Γ; ∆) `+ D

(Γ′, A,D; ∆′′, B) `∗ C
(Γ′, D; ∆′′, A→ B) `∗ C

→Lc

(Γ,Γ′; ∆,∆′′, A→ B) `∗ C
Cuta

(Γ; ∆) `− D
(Γ′, A; ∆′′, B,D) `∗ C

(Γ′; ∆′′, A→ B,D) `∗ C
→Lc

(Γ,Γ′; ∆,∆′′, A→ B) `∗ C
Cutc
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These can be transformed into derivations with cuts of cut-height
n+m:

(Γ; ∆) `+ D (Γ′, A,D; ∆′′, B) `∗ C

(Γ,Γ′, A; ∆,∆′′, B) `∗ C
Cuta

(Γ,Γ′; ∆,∆′′, A→ B) `∗ C
→Lc

(Γ; ∆) `− D (Γ′, A; ∆′′, B,D) `∗ C

(Γ,Γ′, A; ∆,∆′′, B) `∗ C
Cutc

(Γ,Γ′; ∆,∆′′, A→ B) `∗ C
→Lc

-4.7- �La is the last rule used to derive the right premise with Γ′ = Γ′′, A�
B. The derivations with cuts of cut-height n+m+ 1 are

(Γ; ∆) `+ D

(Γ′′, A,D; ∆′, B) `∗ C
(Γ′′, A �B,D; ∆′) `∗ C

�La

(Γ,Γ′′, A �B; ∆,∆′) `∗ C
Cuta

(Γ; ∆) `− D
(Γ′′, A; ∆′, B,D) `∗ C

(Γ′′, A �B; ∆′, D) `∗ C
�La

(Γ,Γ′′, A �B; ∆,∆′) `∗ C
Cutc

These can be transformed into derivations with cuts of cut-height
n+m:

(Γ; ∆) `+ D (Γ′′, A,D; ∆′, B) `∗ C

(Γ,Γ′′, A; ∆,∆′, B) `∗ C
Cuta

(Γ,Γ′′, A � B; ∆,∆′) `∗ C
�La

(Γ; ∆) `− D (Γ′′, A; ∆′, B,D) `∗ C

(Γ,Γ′′, A; ∆,∆′, B) `∗ C
Cutc

(Γ,Γ′′, A � B; ∆,∆′) `∗ C
�La

-4.8- �Lc is the last rule used to derive the right premise with ∆′ = ∆′′, A�
B. The derivations with cuts of cut-height n+max(m, k) + 1 are

(Γ; ∆) `+ D

(Γ′, D; ∆′′, A �B) `− B (Γ′, D; ∆′′, A) `∗ C
(Γ′, D; ∆′′, A �B) `∗ C

�Lc

(Γ,Γ′; ∆,∆′′, A �B) `∗ C
Cuta

(Γ; ∆) `− D
(Γ′; ∆′′, A �B,D) `− B (Γ′; ∆′′, A,D) `∗ C

(Γ′; ∆′′, A �B,D) `∗ C
�Lc

(Γ,Γ′; ∆,∆′′, A �B) `∗ C
Cutc

These can be transformed into derivations each with two cuts of cut-
height n+m and n+ k, respectively:

(Γ; ∆) `+ D (Γ′, D; ∆′′, A �B) `− B
(Γ,Γ′; ∆,∆′′, A �B) `− B

Cuta
(Γ; ∆) `+ D (Γ′, D; ∆′′, A) `∗ C

(Γ,Γ′; ∆,∆′′, A) `∗ C
Cuta

(Γ,Γ′; ∆,∆′′, A �B) `∗ C
�Lc



On Synonymy in Proof-Theoretic Semantics. The Case of 2Int 227

(Γ; ∆) `− D (Γ′; ∆′′, A �B,D) `− B
(Γ,Γ′; ∆,∆′′, A �B) `− B

Cutc
(Γ; ∆) `− D (Γ′; ∆′′, A,D) `∗ C

(Γ,Γ′; ∆,∆′′, A) `∗ C
Cutc

(Γ,Γ′; ∆,∆′′, A �B) `∗ C
�Lc

-4.9- ∧R+ is the last rule used to derive the right premise with C = A∧B.
The derivations with cuts of cut-height n+max(m, k) + 1 are

(Γ; ∆) `+ D

(Γ′, D; ∆′) `+ A (Γ′, D; ∆′) `+ B

(Γ′, D; ∆′) `+ A ∧B ∧R+

(Γ,Γ′; ∆,∆′) `+ A ∧B
Cuta

(Γ; ∆) `− D
(Γ′; ∆′, D) `+ A (Γ′; ∆′, D) `+ B

(Γ′; ∆′, D) `+ A ∧B ∧R+

(Γ,Γ′; ∆,∆′) `+ A ∧B
Cutc

These can be transformed into derivations each with two cuts of cut-
height n+m and n+ k, respectively:

(Γ; ∆) `+ D (Γ′, D; ∆′) `+ A

(Γ,Γ′; ∆,∆′) `+ A
Cuta

(Γ; ∆) `+ D (Γ′, D; ∆′) `+ B

(Γ,Γ′; ∆,∆′) `+ B
Cuta

(Γ,Γ′; ∆,∆′) `+ A ∧B
∧R+

(Γ; ∆) `− D (Γ′; ∆′, D) `+ A

(Γ,Γ′; ∆,∆′) `+ A
Cutc

(Γ; ∆) `− D (Γ′; ∆′, D) `+ B

(Γ,Γ′; ∆,∆′) `+ B
Cutc

(Γ,Γ′; ∆,∆′) `+ A ∧B
∧R+

-4.10.1- ∧R−1 is the last rule used to derive the right premise with C = A∧B.
The derivations with cuts of cut-height n+m+ 1 are

(Γ; ∆) `+ D

(Γ′, D; ∆′) `− A
(Γ′, D; ∆′) `− A ∧B

∧R−1

(Γ,Γ′; ∆,∆′) `− A ∧B
Cuta

(Γ; ∆) `− D
(Γ′; ∆′, D) `− A

(Γ′; ∆′, D) `− A ∧B
∧R−1

(Γ,Γ′; ∆,∆′) `− A ∧B
Cutc

These can be transformed into derivations with cuts of cut-height
n+m:

(Γ; ∆) `+ D (Γ′, D; ∆′) `− A
(Γ,Γ′; ∆,∆′) `− A

Cuta

(Γ,Γ′; ∆,∆′) `− A ∧B
∧R−1

(Γ; ∆) `− D (Γ′; ∆′, D) `− A
(Γ,Γ′; ∆,∆′) `− A

Cutc

(Γ,Γ′; ∆,∆′) `− A ∧B
∧R−1
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-4.10.2- ∧R−2 is the last rule used to derive the right premise with C = A∧B.
The derivations with cuts of cut-height n+m+ 1 are

(Γ; ∆) `+ D

(Γ′, D; ∆′) `− B
(Γ′, D; ∆′) `− A ∧B

∧R−2

(Γ,Γ′; ∆,∆′) `− A ∧B
Cuta

(Γ; ∆) `− D
(Γ′; ∆′, D) `− B

(Γ′; ∆′, D) `− A ∧B
∧R−2

(Γ,Γ′; ∆,∆′) `− A ∧B
Cutc

These can be transformed into derivations with cuts of cut-height
n+m:

(Γ; ∆) `+ D (Γ′, D; ∆′) `− B
(Γ,Γ′; ∆,∆′) `− B

Cuta

(Γ,Γ′; ∆,∆′) `− A ∧B
∧R−2

(Γ; ∆) `− D (Γ′; ∆′, D) `− B
(Γ,Γ′; ∆,∆′) `− B

Cutc

(Γ,Γ′; ∆,∆′) `− A ∧B
∧R−2

-4.11.1- ∨R+
1 is the last rule used to derive the right premise with C = A∨B.

The derivations with cuts of cut-height n+m+ 1 are

(Γ; ∆) `+ D

(Γ′, D; ∆′) `+ A

(Γ′, D; ∆′) `+ A ∨B
∨R+

1

(Γ,Γ′; ∆,∆′) `+ A ∨B
Cuta

(Γ; ∆) `− D
(Γ′; ∆′, D) `+ A

(Γ′; ∆′, D) `+ A ∨B
∨R+

1

(Γ,Γ′; ∆,∆′) `+ A ∨B
Cutc

These can be transformed into derivations with cuts of cut-height
n+m:

(Γ; ∆) `+ D (Γ′, D; ∆′) `+ A

(Γ,Γ′; ∆,∆′) `+ A
Cuta

(Γ,Γ′; ∆,∆′) `+ A ∨B
∨R+

1

(Γ; ∆) `− D (Γ′; ∆′, D) `+ A

(Γ,Γ′; ∆,∆′) `+ A
Cutc

(Γ,Γ′; ∆,∆′) `+ A ∨B
∨R+

1

-4.11.2- ∨R+
2 is the last rule used to derive the right premise with C = A∨B.

The derivations with cuts of cut-height n+m+ 1 are

(Γ; ∆) `+ D

(Γ′, D; ∆′) `+ B

(Γ′, D; ∆′) `+ A ∨B
∨R+

2

(Γ,Γ′; ∆,∆′) `+ A ∨B
Cuta

(Γ; ∆) `− D
(Γ′; ∆′, D) `+ B

(Γ′; ∆′, D) `+ A ∨B
∨R+

2

(Γ,Γ′; ∆,∆′) `+ A ∨B
Cutc

These can be transformed into derivations with cuts of cut-height
n+m:

(Γ; ∆) `+ D (Γ′, D; ∆′) `+ B

(Γ,Γ′; ∆,∆′) `+ B
Cuta

(Γ,Γ′; ∆,∆′) `+ A ∨B
∨R+

2

(Γ; ∆) `− D (Γ′; ∆′, D) `+ B

(Γ,Γ′; ∆,∆′) `+ B
Cutc

(Γ,Γ′; ∆,∆′) `+ A ∨B
∨R+

2
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-4.12- ∨R− is the last rule used to derive the right premise with C = A∨B.
The derivations with cuts of cut-height n+max(m, k) + 1 are

(Γ; ∆) `+ D

(Γ′, D; ∆′) `− A (Γ′, D; ∆′) `− B
(Γ′, D; ∆′) `− A ∨B ∨R−

(Γ,Γ′; ∆,∆′) `− A ∨B
Cuta

(Γ; ∆) `− D
(Γ′; ∆′, D) `− A (Γ′; ∆′, D) `− B

(Γ′; ∆′, D) `− A ∨B ∨R−

(Γ,Γ′; ∆,∆′) `− A ∨B
Cutc

These can be transformed into derivations each with two cuts of cut-
height n+m and n+ k, respectively:

(Γ; ∆) `+ D (Γ′, D; ∆′) `− A
(Γ,Γ′; ∆,∆′) `− A

Cuta
(Γ; ∆) `+ D (Γ′, D; ∆′) `− B

(Γ,Γ′; ∆,∆′) `− B
Cuta

(Γ,Γ′; ∆,∆′) `− A ∨B
∨R−

(Γ; ∆) `− D (Γ′; ∆′, D) `− A
(Γ,Γ′; ∆,∆′) `− A

Cutc
(Γ; ∆) `− D (Γ′; ∆′, D) `− B

(Γ,Γ′; ∆,∆′) `− B
Cutc

(Γ,Γ′; ∆,∆′) `− A ∨B
∨R−

-4.13- → R+ is the last rule used to derive the right premise with C = A→
B. The derivations with cuts of cut-height n+m+ 1 are

(Γ; ∆) `+ D

(Γ′, A,D; ∆′) `+ B

(Γ′, D; ∆′) `+ A→ B
→R+

(Γ,Γ′; ∆,∆′) `+ A→ B
Cuta

(Γ; ∆) `− D
(Γ′, A; ∆′, D) `+ B

(Γ′; ∆′, D) `+ A→ B
→R+

(Γ,Γ′; ∆,∆′) `+ A→ B
Cutc

These can be transformed into derivations with cuts of cut-height
n+m:

(Γ; ∆) `+ D (Γ′, A,D; ∆′) `+ B

(Γ,Γ′, A; ∆,∆′) `+ B
Cuta

(Γ,Γ′; ∆,∆′) `+ A→ B
→R+

(Γ; ∆) `− D (Γ′, A; ∆′, D) `+ B

(Γ,Γ′, A; ∆,∆′) `+ B
Cutc

(Γ,Γ′; ∆,∆′) `+ A→ B
→R+

-4.14- → R− is the last rule used to derive the right premise with C = A→
B. The derivations with cuts of cut-height n+max(m, k) + 1 are

(Γ; ∆) `+ D

(Γ′, D; ∆′) `+ A (Γ′, D; ∆′) `− B
(Γ′, D; ∆′) `− A→ B

→R−

(Γ,Γ′; ∆,∆′) `− A→ B
Cuta
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(Γ; ∆) `− D
(Γ′; ∆′, D) `+ A (Γ′; ∆′, D) `− B

(Γ′; ∆′, D) `− A→ B
→R−

(Γ,Γ′; ∆,∆′) `− A→ B
Cutc

These can be transformed into derivations each with two cuts of cut-
height n+m and n+ k, respectively:

(Γ; ∆) `+ D (Γ′, D; ∆′) `+ A

(Γ,Γ′; ∆,∆′) `+ A
Cuta

(Γ; ∆) `+ D (Γ′, D; ∆′) `− B
(Γ,Γ′; ∆,∆′) `− B

Cuta

(Γ,Γ′; ∆,∆′) `− A→ B
→R−

(Γ; ∆) `− D (Γ′; ∆′, D) `+ A

(Γ,Γ′; ∆,∆′) `+ A
Cutc

(Γ; ∆) `− D (Γ′; ∆′, D) `− B
(Γ,Γ′; ∆,∆′) `− B

Cutc

(Γ,Γ′; ∆,∆′) `− A→ B
→R−

-4.15- �R+ is the last rule used to derive the right premise with C = A�B.
The derivations with cuts of cut-height n+max(m, k) + 1 are

(Γ; ∆) `+ D

(Γ′, D; ∆′) `+ A (Γ′, D; ∆′) `− B
(Γ′, D; ∆′) `+ A �B

�R+

(Γ,Γ′; ∆,∆′) `+ A �B
Cuta

(Γ; ∆) `− D
(Γ′; ∆′, D) `+ A (Γ′; ∆′, D) `− B

(Γ′; ∆′, D) `+ A �B
�R+

(Γ,Γ′; ∆,∆′) `+ A �B
Cutc

These can be transformed into derivations each with two cuts of cut-
height n+m and n+ k, respectively:

(Γ; ∆) `+ D (Γ′, D; ∆′) `+ A

(Γ,Γ′; ∆,∆′) `+ A
Cuta

(Γ; ∆) `+ D (Γ′, D; ∆′) `− B
(Γ,Γ′; ∆,∆′) `− B

Cuta

(Γ,Γ′; ∆,∆′) `+ A �B
�R+

(Γ; ∆) `− D (Γ′; ∆′, D) `+ A

(Γ,Γ′; ∆,∆′) `+ A
Cutc

(Γ; ∆) `− D (Γ′; ∆′, D) `− B
(Γ,Γ′; ∆,∆′) `− B

Cutc

(Γ,Γ′; ∆,∆′) `+ A �B
�R+
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-4.16- �R− is the last rule used to derive the right premise with C = A�B.
The derivations with cuts of cut-height n+m+ 1 are

(Γ; ∆) `+ D

(Γ′, D; ∆′, B) `− A
(Γ′, D; ∆′) `− A �B

�R−

(Γ,Γ′; ∆,∆′) `− A �B
Cuta

(Γ; ∆) `− D
(Γ′; ∆′, B,D) `− A

(Γ′; ∆′, D) `− A �B
�R−

(Γ,Γ′; ∆,∆′) `− A �B
Cutc

These can be transformed into derivations with cuts of cut-height
n+m:

(Γ; ∆) `+ D (Γ′, D; ∆′, B) `− A
(Γ,Γ′; ∆,∆′, B) `− A

Cuta

(Γ,Γ′; ∆,∆′) `− A �B
�R−

(Γ; ∆) `− D (Γ′; ∆′, B,D) `− A
(Γ,Γ′; ∆,∆′, B) `− A

Cutc

(Γ,Γ′; ∆,∆′) `− A �B
�R−

It is shown that cut-height is reduced in all cases.

-5- Cut formula D principal in both premises

For each cut rule four cases can be distinguished. Here, it can be shown
for each case that the derivations can be transformed into ones in which
the occurrences of cut have a reduced cut-height or the cut formula has a
lower weight (or both).

-5.1- D = A ∧ B. The derivation for Cuta with a cut of cut-height
max(n,m) + 1 + k + 1 is

(Γ; ∆) `+ A (Γ; ∆) `+ B

(Γ; ∆) `+ A ∧B ∧R+
(Γ′, A,B; ∆′) `∗ C

(Γ′, A ∧B; ∆′) `∗ C
∧La

(Γ,Γ′; ∆,∆′) `∗ C
Cuta

and can be transformed into a derivation with two cuts of cut-height
(from top to bottom) n+ k and m+max(n, k) + 1:

(Γ; ∆) `+ B

(Γ; ∆) `+ A (Γ′, A,B; ∆′) `∗ C
(Γ,Γ′, B; ∆,∆′) `∗ C

Cuta

(Γ,Γ,Γ′; ∆,∆,∆′) `∗ C
Cuta

(Γ,Γ′; ∆,∆′) `∗ C
Ca/c

Note that in both cases the weight of the cut formula is reduced. The
upper cut is also reduced in height, while with the lower cut we have
a case where cut-height is not necessarily reduced.
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The possible derivations for Cutc with a cut of cut-height n + 1 +
max(m, k) + 1 are

(Γ; ∆) `− A
(Γ; ∆) `− A ∧B

∧R−1
(Γ′; ∆′, A) `∗ C (Γ′; ∆′, B) `∗ C

(Γ′; ∆′, A ∧B) `∗ C
∧Lc

(Γ,Γ′; ∆,∆′) `∗ C
Cutc

or

(Γ; ∆) `− B
(Γ; ∆) `− A ∧B

∧R−2
(Γ′; ∆′, A) `∗ C (Γ′; ∆′, B) `∗ C

(Γ′; ∆′, A ∧B) `∗ C
∧Lc

(Γ,Γ′; ∆,∆′) `∗ C
Cutc

and those can be transformed into derivations with cuts of cut-height
n+m or n+ k, respectively:

(Γ; ∆) `− A (Γ′; ∆′, A) `∗ C
(Γ,Γ′; ∆,∆′) `∗ C

Cutc
(Γ; ∆) `− B (Γ′; ∆′, B) `∗ C

(Γ,Γ′; ∆,∆′) `∗ C
Cutc

Here, both cut-height and weight of the cut formulas are reduced.

-5.2- D = A∨B. The possible derivations for Cuta with a cut of cut-height
n+ 1 +max(m, k) + 1 are

(Γ; ∆) `+ A

(Γ; ∆) `+ A ∨B
∨R+

1

(Γ′, A; ∆′) `∗ C (Γ′, B; ∆′) `∗ C
(Γ′, A ∨B; ∆′) `∗ C

∨La

(Γ,Γ′; ∆,∆′) `∗ C
Cuta

or

(Γ; ∆) `+ B

(Γ; ∆) `+ A ∨B
∨R+

2

(Γ′, A; ∆′) `∗ C (Γ′, B; ∆′) `∗ C
(Γ′, A ∨B; ∆′) `∗ C

∨La

(Γ,Γ′; ∆,∆′) `∗ C
Cuta

and those can be transformed into derivations with cuts of cut-height
n+m and n+ k, respectively:

(Γ; ∆) `+ A (Γ′, A; ∆′) `∗ C
(Γ,Γ′; ∆,∆′) `∗ C

Cuta
(Γ; ∆) `+ B (Γ′, B; ∆′) `∗ C

(Γ,Γ′; ∆,∆′) `∗ C
Cuta

Again, both cut-height and weight of the cut formulas are reduced.

The derivation for Cutc with a cut of cut-height max(n,m)+1+k+1
is

(Γ; ∆) `− A (Γ; ∆) `− B
(Γ; ∆) `− A ∨B

∨R−
(Γ′; ∆′, A,B) `∗ C

(Γ′; ∆′, A ∨B) `∗ C
∨Lc

(Γ,Γ′; ∆,∆′) `∗ C
Cutc
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and can be transformed into a derivation with two cuts of cut-height
n+ k and m+max(n, k) + 1:

(Γ; ∆) `− B
(Γ; ∆) `− A (Γ′; ∆′, A,B) `∗ C

(Γ,Γ′; ∆,∆′, B) `∗ C
Cutc

(Γ,Γ,Γ′; ∆,∆,∆′) `∗ C
Cutc

(Γ,Γ′; ∆,∆′) `∗ C Ca/c

Note that again, in the case of the lower cut, although the cut-height
might increase, the weight of the cut formula is reduced. For the
upper cut both cut-height and weight of the cut formula is reduced.

-5.3- D = A → B. The derivation for Cuta with a cut of cut-height
n+ 1 +max(m, k) + 1 is

(Γ, A; ∆) `+ B

(Γ; ∆) `+ A→ B
→R+

(Γ′, A→ B; ∆′) `+ A (Γ′, B; ∆′) `∗ C
(Γ′, A→ B; ∆′) `∗ C

→La

(Γ,Γ′; ∆,∆′) `∗ C
Cuta

and this can be transformed into a derivation with three cuts of cut-
height (from left to right and from top to bottom) n+ 1 +m, n+ k,
and max(n+ 1,m) + 1 +max(n, k) + 1 respectively:

(Γ, A; ∆) `+ B

(Γ; ∆) `+ A→ B
→R+

(Γ′, A→ B; ∆′) `+ A

(Γ,Γ′; ∆,∆′) `+ A
Cuta

(Γ, A; ∆) `+ B (Γ′, B; ∆′) `∗ C

(Γ, A,Γ′; ∆,∆′) `∗ C
Cuta

(Γ,Γ, Γ′,Γ′; ∆,∆,∆′,∆′) `∗ C
Cuta

(Γ,Γ′; ∆,∆′) `∗ C
Ca/c

In the first case cut-height is reduced, in the second case cut-height
and weight of the cut formula is reduced and in the third case weight
of the cut formula is reduced.

The derivation for Cutc with a cut of cut-height max(n,m)+1+k+1
is

(Γ; ∆) `+ A (Γ; ∆) `− B
(Γ; ∆) `− A→ B

→R−
(Γ′, A; ∆′, B) `∗ C

(Γ′; ∆′, A→ B) `∗ C
→Lc

(Γ,Γ′; ∆,∆′) `∗ C
Cutc

This can be transformed into a derivation with two cuts of cut-height
n+ k and m+max(n, k) + 1:
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(Γ; ∆) `− B
(Γ; ∆) `+ A (Γ′, A; ∆′, B) `∗ C

(Γ,Γ′; ∆,∆′, B) `∗ C
Cuta

(Γ,Γ,Γ′; ∆,∆,∆′) `∗ C
Cutc

(Γ,Γ′; ∆,∆′) `∗ C Ca/c

In the first case cut-height and weight of the cut formula is reduced,
while in the second case the weight of the cut formula is reduced. Here
we can observe a result specific for this calculus due to the mixture
of derivability relations `+ and `− in → R− and the position of the
active formulas in the assumptions and in the counterassumptions in
→ Lc: Derivations containing instances of Cutc are not necessarily
transformed into derivations with a lesser cut-height or a reduced
weight of the cut formula of another instance of Cutc but it can also
happen that Cutc is replaced by Cuta.

-5.4- D = A � B. The derivation for Cuta with a cut of cut-height
max(n,m) + 1 + k + 1 is

(Γ; ∆) `+ A (Γ; ∆) `− B
(Γ; ∆) `+ A �B

�R+
(Γ′, A; ∆′, B) `∗ C

(Γ′, A �B; ∆′) `∗ C
�La

(Γ,Γ′; ∆,∆′) `∗ C
Cuta

This can be transformed into a derivation with two cuts of cut-height
n+ k and m+max(n, k) + 1:

(Γ; ∆) `− B
(Γ; ∆) `+ A (Γ′, A; ∆′, B) `∗ C

(Γ,Γ′; ∆,∆′, B) `∗ C
Cuta

(Γ,Γ,Γ′; ∆,∆,∆′) `∗ C
Cutc

(Γ,Γ′; ∆,∆′) `∗ C Ca/c

Again, due to the mixture of derivability relations `+ and `− in
�R+ and the presence of the active formulas both in assumptions
and counterassumptions in �La, in this case Cuta can be replaced by
instances of Cutc with a reduced weight of the cut formula. In the
upper cut we have a reduction of both cut-height and weight of the
cut formula.

The derivation for Cutc with a cut of cut-height n+1+max(m, k)+1
is

(Γ; ∆, B) `− A
(Γ; ∆) `− A �B

�R−
(Γ′; ∆′, A �B) `− B (Γ′; ∆′, A) `∗ C

(Γ′; ∆′, A �B) `∗ C
�Lc

(Γ,Γ′; ∆,∆′) `∗ C
Cutc



On Synonymy in Proof-Theoretic Semantics. The Case of 2Int 235

and this can be transformed into a derivation with three cuts of cut-
height (from left to right and from top to bottom) n+ 1 +m, n+ k,
and max(n+ 1,m) + 1 +max(n, k) + 1 respectively:

(Γ; ∆, B) `− A

(Γ; ∆) `− A � B
�R−

(Γ′; ∆′, A � B) `− B

(Γ, Γ′; ∆, ∆′) `− B
Cutc

(Γ; ∆, B) `− A (Γ′; ∆′, A) `∗ C

(Γ,Γ′; ∆, B,∆′) `∗ C
Cutc

(Γ,Γ, Γ′,Γ′; ∆,∆,∆′,∆′) `∗ C
Cutc

(Γ,Γ′; ∆,∆′) `∗ C
Ca/c

In the first case cut-height is reduced, in the second case cut-height
and weight of the cut formula and in the third case weight of the cut
formula.
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