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Abstract

In this paper, we rigorously prove the existence of type-level ordered pairs in

Quine’s New Foundations with atoms, augmented by the axiom of infinity and

the axiom of choice (NFU + Inf + AC). The proof uses the cardinal squaring

principle; more precisely, its instance for the (infinite) universe (VCSP), which

is a theorem of NFU+ Inf + AC. Therefore, we have a justification for proposing

a new axiomatic extension of NFU, in order to obtain type-level ordered pairs

almost from the beginning. This axiomatic extension is NFU+ Inf +AC+VCSP,

which is equivalent to NFU+ Inf + AC, but easier to reason about.
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Introduction

Quine’s New Foundations (NF) [12] can be viewed as an improved and
simplified version of Principia mathematica. However, its (relative) con-
sistency has not been proved for thirty years, until Jensen proved that a
slight modification of NF admits a consistency proof [11]. Jensen weakened
the axiom of extensionality and allowed the atoms to exist in the theory,
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named New Foundations with atoms or urelements (NFU). By Jensen’s
results, NFU is relatively consistent with the axiom of infinity (Inf) and the
axiom of choice (AC). So we can work in NFU+ Inf + AC, which seems to
us a good alternative theory to ZF for the foundation of mathematics. As
far as NF (without atoms) is concerned, the search for its consistency proof
is still in progress, most prominently by Holmes [8] and Gabbay [4].

Since NFU embodies a kind of type theory, it is important to keep track
of (relative) types during syntactic manipulations, the procedure which can
sometimes be arduous. The notion that makes this particularly cumber-
some is that of ordered pairs. It is impossible to define type-level ordered
pairs in NFU alone since their existence implies the axiom of infinity [7],
which is independent of NFU [11]. “Type-level” means that an ordered
pair has the same type as its components. There are essentially three
approaches to deal with type-level ordered pairs “problem” in NFU.

First one can be called the way of resignation. In this approach, one
simply rejects the necessity of type-level ordered pairs and works with Ku-
ratowski’s ones. Although that is a valid approach, Kuratowski’s ordered
pairs are difficult to work with because the type of an ordered pair is two
higher than its components, so “type explosion” happens very soon, and
that can be a liability in theory development. For instance, cardinal arith-
metic is defined in an unnatural way, and the proofs about it are very
cumbersome (see section 4) if one is using Kuratowski’s ordered pairs. For
that reason, we would prefer to avoid the resignation way.

The second approach is due to Holmes [7] and its main feature is the
introduction of a new axiom of ordered pairs (which we denote OP) to NFU.
This axiom introduces ordered pairs as a primitive notion and in that
way enables the existence of type-level ordered pairs of any two entities
(sets or atoms). This axiom solves most of our problems and is a good
option for theory development. It does have a justification, for it can be
proved that inside a model of NFU + Inf one can construct a model of
NFU+ OP [5]. Nonetheless, its motivation is entirely pragmatical, since it
is solely envisioned to solve one technical problem, and introducing ordered
pairs as primitives requires extending our language by some (at least one,
usually three) function symbols, without intrinsic rules for type assignment.
Such an extension changes the notion of atomic formulas, complicating the
notion of stratification. Moreover, even though OP is solving a purely
technical problem, its ontological commitment is enormous, for it implies
the existence of infinitely many arbitrary objects [7] in a non-obvious way.
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The third approach is the new one we are proposing: an alternative
axiomatic extension of NFU. We have already mentioned that in every
model of NFU+ Inf one can obtain a model of NFU+OP, but that is only
possible by interpreting OP in the signature specifically extended for OP to
have its intended meaning. On the contrary, NFU+ Inf+AC does not need
any artificial signature extension since it can prove VCSP from which type-
level ordered pairs can be easily obtained. Therefore, we have a justification
to introduce a new axiomatization NFU + Inf + AC + VCSP, which is an
axiomatic extension of NFU+Inf+AC. The main advantage of this approach
is that ordered pairs are available almost from the start, it is well-motivated,
the language does not need to be extended (thus the notion of stratification
remains the same), and it does not have any ontological commitment since
it is a conservative axiomatic extension. However, there is a need for some
Kuratowski’s ordered pair-dependent theory, in order to be able to state
the new axiom, VCSP. Fortunately, the theory needed for that is rather
small (which will be seen soon enough). It is important to note that theory
NFU+ Inf +VCSP does not prove AC (see theorem 5.3), which means that
it cannot be used as a satisfactory theory for development. Therefore, we
find NFU + Inf + AC + VCSP to be the best approach proposed so far for
the development of set theory in Quine’s style.

In order to show that the third approach is a viable option, we need to
prove in NFU+Inf+AC (with Kuratowski’s ordered pairs) that the cardinal
squaring principle holds. From there, we can easily prove the existence of
type-level ordered pairs, completing our justification of alternative exten-
sion NFU+ Inf + AC+ VCSP. The cardinal squaring principle has not yet
been rigorously proved in our setting, although it seems to be a well-known
fact. The main motivation for this paper is a remark about the cardinal
squaring principle in [10]. The same remark is also stated in [6] and [5].

Our proof is based on the one in [2]—but it is not the same since we
need to take the peculiarities of NFU into consideration. Moreover, our
proof that every infinite set has a countable subset, using Kuratowski’s
ordered pairs, is correct, unlike the ones in contemporary literature. The
proof in [7] is using Zorn’s lemma on a set of functions from arbitrary
subsets of natural numbers to an infinite set, which does not work, for
example, for a set of all even natural numbers as a starting infinite set.
Moreover, the proof in [9] is using Zorn’s lemma on an empty set, if we use
any uncountable set as a starting infinite set.
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Overview

In the first section, we introduce the necessary syntax and notation. This
is done in more detail in [1].

In the second section, we introduce the axioms of NFU, along with some
well-known facts needed for the proof of the cardinal squaring principle.
Axiom of choice is also introduced in this section, as well as Kuratowski’s
ordered pairs.

In the third section, we introduce natural and cardinal numbers and
state the axiom of infinity. The main result of this section is the proof that
every infinite set has a countable subset.

In the fourth section, we introduce the sum and product of cardinal
numbers using Kuratowski’s ordered pairs. After a few theorems of prepa-
ration, we finally prove that the cardinal squaring principle holds in our
setting, and then we show how the existence of type-level ordered pairs can
be proved.

In the fifth section, we present the resulting axiomatic extension of NFU,
as well as some results regarding the mutual provability of various claims
we have introduced.

1. Syntax

In this section, we introduce the syntax of NFU as well as some other
necessary notions. Most results are stated without proof; the proofs can
be found in [1].

An alphabet is a collection of:

• (individual) variables v0, v1, . . .

• logical symbols (connectives and quantifiers ) ¬, →, ∃

• non-logical (relation) symbols ∈, =, set

• auxiliary symbols (brackets) (, )

Relation symbols ∈ and = have the usual interpretation, and set is a
unary relation symbol expressing that an entity is a set. All the other usual
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logical symbols (∨, ∧, ↔, ∀, ∃!) can be defined in terms of the existing ones
in the standard way. Formulas are defined in the following way:

φ ::= x ∈ y | x = y | set(x) | (φ1 → φ2) | ¬φ1 | ∃xφ,

where x and y denote variables, while φ, φ1 and φ2 denote formulas. We
will denote with φ(x1, . . . , xn) that x1, . . . , xn are all free variables occuring
in φ. We will usually write (∃x ∈ y)φ, (∀x ∈ y)φ, instead of ∃x(x ∈ y ∧ φ)
and ∀x(x ∈ y → φ) respectively. We write (∀x, y ∈ t)φ as a shorthand for
(∀x ∈ t)(∀y ∈ t)φ.

A formula φ is stratified if there exists a mapping typeφ from the vari-
ables of φ to the positive natural numbers such that: for every subformula
of φ of the form x = y, we have typeφ(x) = typeφ(y), and for every sub-
formula of φ of the form x ∈ y, we have typeφ(y) = typeφ(x) + 1. The
number typeφ(x) is called the type of the variable x in the formula φ.
Conditions imposed on the mapping typeφ are called stratification con-
ditions. We will call mappings satisfying stratification conditions, type
mappings. Types of variables will be written in superscript.

Definition 1.1. Let φ(x, x1, . . . , xn) be a stratified formula. An expres-
sion of the form {z | φ(z, x1, . . . , xn)} is called an abstraction term. We
extend the notion of (atomic) formulas by allowing them to contain ab-
straction terms in addition to variables. Formulas containing abstraction
terms we call formulas of the extended language. Abstraction terms
that appear in atomic formulas are eliminated in the following way:

1. x ∈ {z | φ(z, x1, . . . , xn)} :⇔ φ(x, x1, . . . , xn)

2. x = {z | φ(z, x1, . . . , xn)} :⇔
set(x) ∧ ∀y

(
y ∈ x↔ y ∈ {z | φ(z, x1, . . . , xn)}

)
3. {z | φ(z, x1, . . . , xn)} ∈ x :⇔ (∃y ∈ x)

(
y = {z | φ(z, x1, . . . , xn)}

)
4. set({z | φ(z, x1, . . . , xn)}) :⇔ ∃y

(
y = {z | φ(z, x1, . . . , xn)}

)
Definition 1.2. Let φ(x1, . . . , xn, y1, . . . , ym) and ψ(w, x1, . . . , xn) be for-
mulas. Nested abstraction terms are eliminated in the following way:{

{w | ψ(w, x1, . . . , xn)} | φ(x1, . . . , xn, y1, . . . , ym)
}
:=

{
z
∣∣ set(z) ∧

∃x1 · · · ∃xn
(
φ(x1, . . . , xn, y1, . . . , ym) ∧ z = {w | ψ(w, x1, . . . , xn)}

)}
.
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It is important to be able to assign types to abstraction terms. If
φ(z, z1, . . . , zn) is a stratified formula and t = {z | φ(z, z1, . . . , zn)} is an
abstraction term, then the type of t in some stratified formula is determined
by the type of a variable t in a formula z ∈ t ↔ φ(z, z1, . . . , zn). All this
has been done more formally and precisely in [1].

When defining sets, we will usually not check whether the defining
formulas are stratified. That can be easily done using type assignments
in the extended language (again, details about this procedure can be found
in [1]). Explicit checking will only be done in some proofs.

2. NFU set theory

Axiom of extensionality:

∀x∀y
(
set(x) ∧ set(y) ∧ ∀z(z ∈ x↔ z ∈ y) → x = y

)
.

Axiom of sethood:
∀x (∀y ∈ x) set(x).

Axiom schema of stratified comprehension: if φ(z, x1, . . . , xn) is
stratified, then

∀x1 · · · ∀xn∃y
(
set(y) ∧ ∀z

(
z ∈ y ↔ φ(z, x1, . . . , xn)

))
.

We say that x is a subset of y if set(x) ∧ set(y) ∧ (∀z ∈ x)(z ∈ y),
which is written x ⊆ y. We write x ⊂ y if x ⊆ y and x ̸= y. Some simple
sets and operations in NFU are:

∅ := {x | x ̸= x}, V := {x | x = x}, SET := {x | set(x)},
x ∪ y := {z | z ∈ x ∨ z ∈ y}, x ∩ y := {z | z ∈ x ∧ z ∈ y},⋃
x := {z | (∃t ∈ x)(z ∈ t)},

⋂
x := {z | (∀t ∈ x)(z ∈ t)},

x \ y := {z | z ∈ x ∧ z ̸∈ y}, xc := {z | z ̸∈ x},
{x} := {z | z = x}, P1(x) :=

{
{t}

∣∣ t ∈ x
}

It is easy to check the following equivalence:

∀x
(
set(x) ↔ x = ∅ ∨ (∃y ∈ x)

)
.
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Definition 2.1. For x, y ∈ V we define their ordered pair
(x, y) :=

{
{x}, {x, y}

}
(where {a, b} := {a} ∪ {b}).

These ordered pairs are the usual Kuratowski’s ordered pairs and they
have the unfortunate property of not being type-level. More precisely, if x
and y have type n in some stratified formula, then (x, y) has type n+ 2 in
that same formula.

Definition 2.2. For sets X and Y we define their Cartesian product
X × Y := {(x, y) | x ∈ X ∧ y ∈ Y }.

Definition 2.3. Let X and Y be sets. We say that R is a (binary)
relation between X and Y if R ⊆ X × Y , which we write rel(R,X, Y ).
We say that R is a relation if rel(R, V, V ).

Let R be a relation. Instead of (x, y) ∈ R we will write x R y.
In addition, if (x, y) ̸∈ R, we will write x ̸R y.

Definition 2.4. Let R be a relation. We define its domain dom(R) :=
{x | ∃y(x R y)} and range rng(R) := {y | ∃x(x R y)}.

Definition 2.5.

1. We define identity on a set X as idX := {(x, x)
∣∣ x ∈ X}.

2. For relations R and R′ we define their composition
as R′ ◦R := {(x, z)

∣∣ ∃y(x R y R′ z)}.

3. For a relation R, we define its inverse as R−1 :=
{
(y, x)

∣∣ x R y}.

Definition 2.6. Let X and Y be sets. We say that f is a function
from X to Y if rel(f,X, Y ) ∧ (∀x ∈ X)(∃!y ∈ Y )(x f y), which we write
func(f,X, Y ).

For a function f and x ∈ dom(f), we introduce the standard notation
f(x) for the unique y such that x f y.

Definition 2.7. Let X and Y be sets.

1. f is an injection from X to Y if func(f,X, Y ) ∧ (∀x1, x2 ∈ X)(
f(x1) = f(x2) → x1 = x2

)
, which we write inj(f,X, Y ).

2. f is a bijection between X and Y if inj(f,X, Y ) ∧ rng(f) = Y ,
which we write bij(f,X, Y ).
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It is easy to see that every relation R is a relation on dom(R)∪ rng(R).
We say that R is a reflexive relation if x R x for every x ∈ dom(R).

Definition 2.8. We say that a relation ⪯ is a partial order if it is re-
flexive, antisymmetric and transitive; symbolically, if

rel(⪯, V, V ) ∧
(
∀x ∈ dom(⪯)

)
(x ⪯ x) ∧

∧ ∀x∀y(x ⪯ y ⪯ x→ x = y) ∧ ∀x∀y∀z(x ⪯ y ⪯ z → x ⪯ z),

which is written Po(⪯). We will say that ⪯ is a partial order on a set X if
Po(⪯) ∧ dom(⪯) = X, which is written Po(⪯, X).

Definition 2.9. We say that a relation R on X is an equivalence rela-
tion if it is reflexive, symmetric, and transitive. For every x ∈ X we define
its equivalence class [x]R := {y | y R x}.

Definition 2.10. For a setX we define its quotient set by an equivalence
relation R on X as X/R := {[x]R | x ∈ X}.

Definition 2.11. Let ⪯ be a partial order, Y ⊆ dom(⪯) and y0 ∈ dom(⪯).
We say that y0 is

1. a maximal element of Y if y0 ∈ Y ∧ (∀y ∈ Y )(y0 ⪯ y → y0 = y);

2. an upper bound of Y if (∀y ∈ Y )(y ⪯ y0);

3. the greatest element of Y if y0 ∈ Y and y0 is an upper bound of Y ;

4. the least element of Y if y0 is the greatest element of Y with respect
to the relation ⪰ := ⪯−1.

Definition 2.12. Let ⪯ be a partial order.
We say that L ⊆ dom(⪯) is a chain in ⪯ if (∀x, y ∈ L)(x ⪯ y ∨ y ⪯ x).

Lemma 2.13. Let X be a set of functions ordered by inclusion,
and let C ⊆ X be a chain. Then

1.
(⋃

C
)−1

=
⋃
{f−1 | f ∈ C}.

2.
⋃
C is a function.

3. dom
(⋃

C
)
=

⋃{
dom(f) | f ∈ C

}
4. rng

(⋃
C
)
=

⋃{
rng(f) | f ∈ C

}
5. If every function f ∈ C is an injection, then

⋃
C is an injection.
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Proof:

1. Let z ∈
(⋃

C
)−1

, then z = (x, y) for some x, y such that (y, x) ∈⋃
C. Then there exists f ∈ C such that (y, x) ∈ f , which implies

(x, y) ∈ f−1 ⊆
⋃
{f−1 | f ∈ C}. The other direction is analogous.

2. Let x, y ∈ dom
(⋃

C
)
. Then there exist a, b ∈ rng

(⋃
C
)
such that

(x, a), (y, b) ∈
⋃
C. It means there exist functions f1, f2 ∈ C such

that (x, a) ∈ f1 and (y, b) ∈ f2. Because C is a chain, without
the loss of generality, we can assume f1 ⊆ f2. From that we get
(x, a), (y, b) ∈ f2 ⊆

⋃
C. If x = y, since f2 is a function, we get

a = b. Therefore,
⋃
C is a function.

3. Let z ∈ dom
(⋃

C
)
. Then there exists y ∈ rng

(⋃
C
)
such that (z, y) ∈⋃

C. Then there exists a function f ∈ C such that (z, y) ∈ f , that
is, z ∈ dom(f). From that, we get z ∈

⋃{
dom(f) | f ∈ C

}
. If z ∈⋃{

dom(f) | f ∈ C
}
, then there exists f ∈ C such that z ∈ dom(f).

That means there exists y ∈ rng(f) such that (z, y) ∈ f ⊆
⋃
C, which

implies z ∈ dom
(⋃

C
)
.

4. Follows from (1) and (3).

5. Follows from (1) and (2).

We say that a relation on X is a well-order if it is a partial order and
every nonempty subset of X has the least element in that order.

Axiom of choice: ∀x
(
set(x) ∧ ∅ /∈ x ∧ (∀y, z ∈ x)(y ̸= z → y ∩ z = ∅) →

∃u(∀w ∈ x)∃!v(v ∈ w ∩ u)
)
.

Zorn’s lemma: Let ⪯ be a partial order. If every chain C in ⪯ has an
upper bound, then dom(⪯) has a maximal element.

Zermelo’s theorem: Every set can be well-ordered.

Theorem 2.14. Axiom of choice ⇔ Zorn’s lemma ⇔ Zermelo’s theorem.

The equivalence proof resembles the usual one (from ZF) and can be
found in [7]. It is worth noting that in Zorn’s lemma, we can assume that
the chain is nonempty provided we prove first that ⪯ is nonempty (we can
always use any element of dom(⪯) as an upper bound for the empty chain).
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3. Cardinal numbers

Definition 3.1.

1. The set 0 := {∅} is zero.

2. For a set x we define its successor
succ(x) :=

{
y
∣∣ (∃z ∈ y)(y \ {z} ∈ x)

}
.

3. The set N :=
⋂{

x
∣∣ 0 ∈ x ∧ (∀y ∈ x)

(
succ(y) ∈ x

)}
is called the set of natural numbers.

4. The set FIN :=
⋃
N is the set of finite sets.

It can be proved that succ(x) =
{
y ∪ {z}

∣∣ y ∈ x ∧ z ̸∈ y
}
.

We define 1 := succ(0) = P1(V ) and 2 := succ(1).
We say that a set x is finite if x ∈ FIN, otherwise it is infinite.

Axiom of infinity: V ̸∈ FIN.

Peano’s axioms are the following:

1. 0 ∈ N.

2. (∀n ∈ N)
(
succ(n) ∈ N

)
.

3. (∀n ∈ N)
(
0 ̸= succ(n)

)
.

4. (∀n ∈ N)(∀m ∈ N)
(
succ(n) = succ(m) → n = m

)
.

5. If φ(x) is a stratified formula, then

φ(0) ∧ (∀n ∈ N)
(
φ(n) → φ(succ(n))

)
→ (∀n ∈ N)φ(n).

The first three Peano axioms can be easily proved in NFU. However, the
axiom schema of mathematical induction must be restricted to stratified
formulas only. Lastly, the fourth Peano axiom is equivalent to the axiom
of infinity. This proof can be found in [14], but we will provide one too.

Lemma 3.2. Every natural number n is 0 or a successor of some natural
number.

Proof: We need to prove (∀n1 ∈ N2)
(
n1 = 01 ∨ (∃m1 ∈ N2)(n1 =

succ(m1)1)
)
, which is stratified, so we can prove it by induction on n.
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The claim trivially holds for n = 0. Assume the claim holds for some
n ∈ N and prove it for succ(n). However, succ(n) is the successor of n, and
n is a natural number.

Definition 3.3. We define the equipotence relation between sets
as (∼) := {(x, y) | set(x) ∧ set(y) ∧ ∃f bij(f, x, y)}.

Definition 3.4. We define the set of cardinal numbers
Card := SET/(∼) = {[x]∼ | set(x) }.

We will denote [x]∼ with |x| and call it the cardinal number of set
x.

Definition 3.5. We define the relation ≤ on Card with
κ ≤ λ :⇐⇒ (∀X ∈ κ)(∀Y ∈ λ)∃f inj(f,X, Y ).

It is easy to show that it is enough, in definition 3.5, to require just the
existence of X and/or Y (the existence of an injection between two sets is
invariant with respect to equipotence).

Theorem 3.6. The relation ≤ is a well-order.

Proof (Sketch of proof:): Reflexivity and transitivity are easy.
The antisymmetricity is actually Cantor–Bernstein’s theorem which can

be found in [7].
The fact that every nonempty set of cardinals has the least element is

proved using Zermelo’s theorem. See [7, p. 123–124].

We write κ < λ for κ ≤ λ ∧ κ ̸= λ.

Definition 3.7. We say that a set x is Dedekind-infinite, if there exists
y ⊂ x such that x ∼ y.

For now, we can only prove that Dedekind-infinity implies infinity.

Theorem 3.8. If a set is Dedekind-infinite, then it is infinite.

Proof: We will prove the contrapositive of the claim: if a set is finite
(that is, it is an element of some natural number), then there is no bijection
between it and its any proper subset.

Formula (∀n2 ∈ N3)(∀x1 ∈ n2)∀y1(y1 ⊂ x1 → x1 ̸∼4 y1) is stratified,
so we can prove it by induction on n.
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Let n = 0 and x ∈ n be arbitrary. Then x = ∅, so the statement holds
vacuously since x does not have any nonempty proper subsets. Assume that
for a natural number n the statement holds. Let us prove the statement for
succ(n). Let x ∈ succ(n) be arbitrary. Then x = y ∪ {z}, for some y ∈ n
and z ̸∈ y. Assume that there exists a u ⊂ x and a bijection f : x→ u.

First case is when z ̸∈ u. Then we have u ⊆ y, and so u \ {f(z)} ⊂ y,
but we have bij(f \ {(z, f(z))}, y, u \ {f(z)}), which is a contradiction.

Second case is when z ∈ u. Then there exists w ∈ x such that f(w) = z.
Define h := idx\{w,z} ∪ {(z, w), (w, z)}. It is obvious that bij(h, x, x), so
bij(f ◦ h, x, u). The same argument holds if z = w. Since (f ◦ h)(z) =
f(w) = z, we have bij(f \{(z, z)}, y, u\{z}). However, we have u\{z} ⊂ y,
which is a contradiction.

Lemma 3.9. The following holds: (∀n ∈ N)(∀y ∈ n)∀z(z ∈ n↔ y ∼ z).

Proof: Formula (∀n2 ∈ N3)(∀y1 ∈ n2)∀z1(z1 ∈ x2 ↔ z1 ∼4 y1) is strati-
fied, so we can prove it by induction on x.

Let n = 0, let y ∈ n and z be arbitrary. From y ∈ n we get y = ∅. If
z ∈ n, we get z = ∅ = y. Obviously, bij(∅, ∅, ∅). If y ∼ z, then there exists
a bijection f between y and z. Because y = ∅, f is a bijection between ∅
and z, so we have z = rng(f) = rng(∅) = ∅ ∈ 0 = n.

Assume that the claim holds for a natural number n. Let us prove it
for succ(n). If succ(n) = ∅, the claim trivially holds. Let y ∈ succ(n) and
z be arbitrary. By the definition of successor we have y = a ∪ {b} such
that a ∈ n and b ̸∈ a. If z ∈ succ(n), then z = u ∪ {v}, where u ∈ n
and v ̸∈ u. By the assumption, we have u ∼ a, so there exists a bijection
f : a→ u and the function g := f ∪{(b, v)} is obviously a bijection between
y and z. If y ∼ z, then there exists a bijection f : y → z. We define
x := {f(t) | t ∈ a} and y := f(b). Obviously, y ̸∈ x and since x ∼ a ∈ n,
we have z = x ∪ {y} ∈ succ(n).

Theorem 3.10. V ̸∈ FIN ⇐⇒ ∅ ̸∈ N ⇐⇒ N ⊆ Card ⇐⇒ (P4).

Proof: We will first prove V ̸∈ FIN =⇒ ∅ ̸∈ N. Assume V ̸∈ FIN.
Formula (∀n1 ∈ N2)(n1 ̸= ∅1) is stratified, so we can prove it by induction
on n. For n = 0 we have 0 = {∅} ̸= ∅. Let us assume that the claim holds
for an n ∈ N and prove it for succ(n). Assume that succ(n) = ∅. We know
succ(n) =

{
y ∪ {z}

∣∣ y ∈ n ∧ z ̸∈ y
}
=

{
t | (∃y ∈ n)(∃z ̸∈ y)(t = y ∪ {z})

}
.

Now from succ(n) = ∅ follows (∀y ∈ n)∀z(z ∈ y), and from the axiom of
extensionality and the fact that V is the universal set we get ∀y

(
y ∈ n →



Alternative Axiomatic Extension of NFU 563

V = y
)
. From that we get n = ∅ or n = {V }. It is impossible to have

n = ∅ by the induction hypothesis, and from n = {V } we get V ∈ FIN,
which contradicts the assumption.

The claim ∅ ̸∈ N =⇒ N ⊆ Card follows from lemma 3.9. Assume
∅ ̸∈ N. Formula (∀n1 ∈ N2)(n1 ∈ Card 2) is stratified, so we can prove it
by induction on n. For n = 0 we have 0 = |∅| ∈ Card. Assume that for an
n ∈ N there exists x such that n = |x|, and prove the claim for succ(n).
By the assumption, we have succ(n) ̸= ∅, so there exists a y ∈ succ(n). By
lemma 3.9 we have z ∈ succ(n) ↔ z ∈ |y|. Therefore, succ(n) = |y|.

Let us prove N ⊆ Card =⇒ (P4). Assume N ⊆ Card. Let n,m ∈ N ⊆
Card and assume succ(n) = succ(m) = |z| for some z. By definitions of
successor we have z = a∪{b} = c∪{d}, where a ∈ n, c ∈ m, b ̸∈ a and d ̸∈ c.
If b = d, then we have a = c, for if w ∈ a ⊆ z = c∪{d}, then w ∈ c∪{d}, and
since w ̸= d, then w ∈ c. The converse when w ∈ c is proved analogously.
If b ̸= d, then d ∈ a and b ∈ c. Then g := idz\{b,d} ∪ {(b, d)} is obviously a
bijection between a and c. In both cases, we have a ∼ c, meaning n = m.

It remains to prove (P4) =⇒ V ̸∈ FIN. Assume V ∈ FIN. Then
there exists an n ∈ N such that V ∈ n. We claim n = {V }. Assume
x ∈ n such that x ̸= V . Then we have x ⊂ V and because x, V ∈ n,
by lemma 3.9 we get x ∼ V . Now from theorem 3.8 we get that V is
an infinite set, that is, V ̸∈ FIN, which is a contradiction. Therefore,
n = {V }. Now by the definition of successor we have succ(n) = {y ∪ {z} |
y ∈ n∧ z ̸∈ y} = {y∪{z} | z ̸∈ V } = ∅ ∈ N and succ(∅) = ∅. Then we have
succ(n) = succ(∅), but clearly n ̸= ∅. Therefore, fourth Peano axiom does
not hold.

We will say that a cardinal number is an infinite cardinal number if
it is not a natural number (that is, if it is |X| for an infinite X).

Theorem 3.11. Let X be a set, x0 ∈ X, and f : X → X be a function.
Then there exists a unique function g : N → X such that g(0) = x0 and
g
(
succ(n)

)
= f

(
g(n)

)
for every n ∈ N.

Proof: Let X, x0 and f be as stated. Formula

φ(t) :=
(
(01, x10)

3 ∈ t4 ∧ (∀n1 ∈ N2)(∀y1 ∈ X2)(
(n1, y1)3 ∈ t4 → (succ(n1)1, f4(y1)1)3 ∈ t4

))
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is stratified, so we can define the set S :=
{
t
∣∣ φ(t)}. Obviously N×X ∈ S,

so g :=
⋂
S ⊆ N×X. In other words, we have rel(g,N, X), so we can use

the usual infix notation for g.
First, we prove φ(g). For every t ∈ S we have φ(t), so 0 t x0, therefore

also 0 g x0. In the same manner, if n ∈ N, y ∈ X and n g y, then for every
t ∈ S we have n t y. By φ(t), we have succ(n) t f(y), and therefore also
succ(n) g f(y). So, we can conclude g ∈ S.

Formula ψ(n) := (∃! y1 ∈ X2)(n1g4y1) is stratified, so we can prove
(∀n ∈ N)ψ(n) by induction (fifth Peano axiom). For n = 0 we have 0 g x0
by φ(g), and for any x′ ∈ X \ {x0} we can see that g′ := g \ {(0, x′)} also
satisfies φ. Namely, (0, x′) is different from any ordered pair forced into
t by φ, since x′ ̸= x0, and 0 ̸= succ(n) for any n by third Peano axiom.
Therefore we have g′ ∈ S, from which g ⊆ g′ = g \ {(0, x′)}, hence 0 ̸g x′.

In much the same manner, suppose that (for a particular k ∈ N) there
is a unique y ∈ X such that k g y. By φ(g) we have succ(k) g f(y),
so existence holds. To prove uniqueness, suppose succ(k) g u for some
u ∈ X \ {f(y)}. Now we prove that g′′ := g \ {(succ(k), u)} satisfies φ:
it obviously satisfies the first conjunct since 0 ̸= succ(k) by third Peano
axiom. For the second, let m ∈ N and z ∈ X be such that m g′′ z. Then
m g z since g′′ ⊆ g, and therefore succ(m) g f(z). But if

(
succ(m), f(z)

)
=(

succ(k), u
)
, then m = k by fourth Peano axiom, and also u = f(z).

However, u ̸= f(y) means y ̸= z, and that contradicts uniqueness for k.
Therefore we have func(g,N, X), so we can use the usual function no-

tation for g. We have already proved g(0) = x0. For any n ∈ N, we have
n g g(n) (since dom(g) = N), and from φ(g) we also have succ(n) g f

(
g(n)

)
,

which in function notation is exactly g
(
succ(n)

)
= f

(
g(n)

)
.

It remains to prove that such g is unique. Assume the opposite, that
there is h : N → X such that h ̸= g, h(0) = x0, and for all n ∈ N,
h
(
succ(n)

)
= f

(
h(n)

)
. Formula (∀n1 ∈ N2)

(
h4(n1)1 = g4(n1)1

)
is strati-

fied, so we can prove it by induction on n. For n = 0 we have h(0) = x0 =
g(0). Assume that the claim holds for some n ∈ N, and prove it for succ(n).
We have h

(
succ(n)

)
= f

(
h(n)

)
= f

(
g(n)

)
= g

(
succ(n)

)
. Therefore, h = g,

which is a contradiction.

It is easy to see that, in theorem 3.11, if x0 has type k, X has type
k + 1, and f has type k + 3, then g has type k + 3.
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Theorem 3.12. Let t be a term with variable x free, which is type-level—
that is, in every stratified formula in the extended language where t appears,
type(t) = type(x). Then for every set A, there is a function f such that

f(x) = t, for every x ∈ A. (3.1)

Furthermore, f is unique if we require additionally that dom(f) = A.

That is, we can define a function by expression (3.1). We write short-
hand “f(x) := t, x ∈ A” and call it the definition of a function from a
domain and a type-level term. We treat A as a constant—it can also be a
variable, but it must not appear in t then.

Proof: We define f := {(x, t) | x ∈ A} = {p | (∃x1 ∈ A2)(p3 = (x1, t1)3)}.
Since t is type-level, this is well-defined, and the existence (and sethood)
of f follows from the axiom of stratified comprehension. The uniqueness
follows from extensionality.

In a completely analogous way, we can prove the following.

Corollary 3.13. Let t be a term with variables x and y free, such that in
every stratified formula in the extended language where t appears, type(t) =
type((x, y)). Then for every two sets A and B, there is a function f such
that

f(x, y) = t, for every x ∈ A and y ∈ B. (3.2)

Furthermore, f is unique if we require additionally that dom(f) = A×B.

Besides the infinitude of V, stated in the axiom of infinity, we can now
prove the infinitude of another set.

Theorem 3.14. The set N is Dedekind-infinite.

Proof: Since succ(n) is type-level in n, by theorem 3.12 there is a func-
tion s such that s(n) := succ(n), n ∈ N. By second Peano axiom s is
a function from N to N, and it is an injection because of fourth Peano
axiom. Therefore, bij

(
s,N, rng(s)

)
, and from third and first Peano axiom,

rng(s) ⊆ N \ {0} ⊂ N.

The fact that N is infinite is an easy consequence of theorems 3.8
and 3.14. The cardinal number of natural numbers is ℵ0 := |N|. We
say that a set X is countable if |X| = ℵ0.
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From theorems 3.10 and 3.11 we can define the sum and product of
natural numbers. Note that succ can be viewed as a function on the set of
natural numbers, which we denote by s as in the proof of theorem 3.14. For
an arbitrary m ∈ N by theorem 3.11 there exists a function sm such that
sm(0) = m and sm

(
succ(n)

)
= s

(
sm(n)

)
for every n ∈ N. Since sm has the

same type as s, it is easy to see that if m has a type k, then sm has a type
k + 3, because m plays the role of x0 from theorem 3.11. We now define
the sum of natural numbers as a function term add(m,n) := sm(n).
Obviously, if m and n have type k, then sm(n) has type k. We use the
usual notation for summation m+ n := add(m,n).

The product of natural numbers is defined in the same way. For arbi-
trarym ∈ N by theorem 3.11 there exists a function pm such that pm(0) = 0
and pm

(
succ(n)

)
= sm

(
p(n)

)
. We now define the product of natural

numbers n,m ∈ N as a function term mul(m,n) := pm(n). Similarly
(since sm plays the role of f from theorem 3.11), if m and n have type k,
then mul(m,n) has a type k. We use the usual notation for multiplication
m · n := pm(n). It is easy to prove by induction the usual properties of
addition and multiplication.

Lemma 3.15. If X is a finite set, and Y ⊆ X, then Y is finite.

Proof: Let X be an arbitrary finite set, that is, X ∈ FIN. That means
there exists n ∈ N such that X ∈ n. It is enough to prove the formula
(∀n2 ∈ N3)(∀X1 ∈ n2)∀Y 1(Y 1 ⊆ X1 → Y 1 ∈ FIN 2), which is stratified,
so we can prove it by induction on n.

If n = 0, we have X ∈ 0. That implies X = ∅. Now for Y ⊆ ∅ we have
Y = ∅ ∈ 0 ⊆ FIN. Let us assume the claim holds for some n and prove it
for succ(n).

Let X ∈ succ(n) and Y ⊆ X. That means X = x∪{z}, for some x ∈ n
and z ̸∈ x. If z ̸∈ Y , then Y ⊆ x ∈ n, and from the induction assumption
we have Y ∈ FIN. If z ∈ Y , then Y \ {z} ⊆ x, so from the induction
assumption we have Y \ {z} ∈ FIN, that is, there exists some k ∈ N such
that Y \ {z} ∈ k. Because z ̸∈ Y \ {z}, we have Y = Y \ {z} ∪ {z} ∈
succ(k) ⊆ FIN by definition of successor.

Lemma 3.16. The following statements hold:

1. For all n ∈ N, if x ∈ succ(n) and y ∈ x, then x \ {y} ∈ n.

2. There is no natural number n such that n < 0.
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3. For all n ∈ N we have n < succ(n).

4. For every n,m ∈ N, m ≤ n if and only if m < succ(n).

5. Every nonempty partial ordered finite set has a maximal element.

6. For all n ∈ N we have n < ℵ0.

7. For n,m ∈ N, if n < m, then succ(n) < succ(m).

8. For n,m ∈ N, if n < m, then for every x ∈ N, n+ x < m+ x.

9. For n,m ∈ N, if n < m, then for every x ∈ N, n · x ≤ m · x.

Proof:

1. Let n ∈ N be arbitrary, x ∈ succ(n) and y ∈ x. Because x ∈ succ(n),
there exists z ∈ x such that x \ {z} ∈ n. Then one bijection between
x\{y} and x\{z} is given by idx\{y} if y = z, and by idx\{y,z}∪{(z, y)}
otherwise.

2. Assume the contrary, that there exists n ∈ N such that n ≤ 0 ∧ n ̸=
0. Let A ∈ n and B ∈ 0 be arbitrary. By definition of relation
≤, there exists an injection from A to B. However, B ∈ 0 means
B = ∅, therefore, that injection must be empty, hence A = ∅. That
is impossible because n ̸= 0.

3. Let A ∈ n ∈ N be arbitrary. Then A ̸= V , so there exists x ∈ V
such that x ̸∈ A. Now by the characterization of a successor, we
have A ∪ {x} ∈ succ(n). Obviously inj(idA, A,A ∪ {x}), so n ≤
succ(n). Assume that n = succ(n). Then there exists a bijection
f : A → A ∪ {x}. Obviously A ⊂ A ∪ {x}, and by theorem 3.8 we
have that A ∪ {x} is infinite, therefore A ∪ {x} ̸∈ FIN. But we also
have A ∪ {x} ∈ succ(n) ⊆ FIN, which means that the assumption is
wrong, therefore n < succ(n).

4. Let n and m be arbitrary. Assume m ≤ n. From 3.16(3) we have
n ≤ succ(n) and n ̸= succ(n). From transitivity of relation ≤ we get
m ≤ succ(n). Assume m = succ(n). Then we have succ(n) ≤ n and
n ≤ succ(n), which gives n = succ(n). That is a contradiction with
n ̸= succ(n), so m ≤ succ(n) and m ̸= succ(n), that is, m < succ(n).

Assume m < succ(n). Let A ∈ m and B ∈ succ(n) be arbitrary.
By the assumption, there exists an injection f : A→ B, which is not
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a bijection. That means there exists b ∈ B such that b ̸∈ rng(f).
That implies f is also an injection from A to B \ {b}, and because
lemma 3.16(1) implies B \ {b} ∈ n, we get m ≤ n.

5. We need to prove

(∀X ∈ FIN \ {∅})∀R
(
Po(R,X) →

→ (∃x0 ∈ X)(∀y ∈ X \ {x0})(x0 ̸R y)
)
,

which follows from the stratified formula

(∀n3 ∈ N4 \ {03}4)(∀X2 ∈ n3)∀R4
(
Po(R4, X2) →

→ (∃x10 ∈ X2)(∀y1 ∈ X2 \ {x10}2)(x10 ̸R4y1)
)
.

We will prove it by induction. Let n = 1, X ∈ 1 be arbitrary and R
be a partial order on X. From X ∈ 1 = succ(0) we get that there
exists z0 such that X = {z0}, and then R = {(z0, z0)}, so z0 is a
maximal element of X under relation R. Assume the claim holds for
a natural number n ≥ 1, and prove it for succ(n).

Let X ∈ succ(n) be arbitrary, and R be a partial order on X. From
characterization of successor, we have X = x∪ {y}, where x ∈ n and
y ̸∈ x. Since R is a partial order, R′ := R ∩ (x × x) is partial order
on x. From the induction hypothesis, we have that there exists a
maximal element z0 of x under relation R′. If z0 R y, then y must be
a maximal element of X under R. For if there existed some w0 ̸= y
such that y R w0, then from z0 R y and transitivity of R, we would
have z0 R w0. Since w0 ̸= y, we have w0 ∈ x, which is a contradiction
with maximality of z0 in x. If y R z0, or z0 and y are not comparable,
then z0 is a maximal element of X under R.

6. Let n ∈ N be arbitrary. Assume n ≥ ℵ0. By definition of ≤, there
exists and injection f : N → A, where A ∈ n. That means N ∼ rng(f),
and also rng(f) ⊆ A. Because A is finite, by theorem 3.15 we have
rng(f) finite, which implies that N is finite, which is a contradiction.
Therefore, n < ℵ0.

7. Take n,m ∈ N such that n < m. Assume succ(m) ≤ succ(n). By (3)
we have m < succ(m) ≤ succ(n), and from (4) we get m ≤ n, which
is a contradiction.
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8. Take arbitrary n,m ∈ N. Formula (∀x1 ∈ N2)(n1 <4 m1 → (m1 +
x1)1 <4 (n1 + x1)1) is stratified, so we can prove it by induction on
x. If x = 0, then from n < m we get n + x = n + 0 = n < m =
m + x. Assume that the claim holds for some x ∈ N, and let us
prove it for succ(x). If n < m, then from the associativity we get
n+ succ(x) = succ(n+x), and by the induction assumption, we have
n + x < m + x. Now from (7) we get succ(n + x) < succ(m + x).
Therefore, n+ succ(x) ≤ succ(m+ x) = m+ succ(x).

9. Take arbitrary n,m ∈ N. Formula (∀x1 ∈ N2)
(
n1 <4 m1 → (n1 ·

x1)1 ≤4 (m1 · x1)1
)
is stratified, so we can prove it by induction

on x. If x = 0, then the claim trivially holds. Let us assume the
claim for some x ∈ N, and prove it for succ(x). If n < m, then from
the induction assumption, (8) and commutativity of addition, we get
n · succ(x) = n · x+ n ≤ m · x+m = m · succ(x).

Remark 3.17. It is useful to note that if the partial order in lemma 3.16(5)
is a well-order, then a maximal element is also the greatest element.

Definition 3.18. For every n ∈ N we define its initial segment as

An := {m ∈ N | m < n}.

Note that if n has type s, then An has type s+ 1.

Lemma 3.19.

1. For every n ∈ N, the set An is finite.

2. If X is a set of initial segments of natural numbers and
⋃
X ⊂ N,

then
⋃
X is an initial segment of natural numbers.

Proof:

1. Formula (∀n1 ∈ N2)(A2
n1 ∈ FIN 3) is stratified, so we can perform

mathematical induction on n. For n = 0 we have A0 = {m ∈ N |
m < 0} = ∅ ∈ 0 ⊆ FIN. Assume that for some n ∈ N, set An is finite,
and let us prove the statement for Asucc(n). Because An ∈ FIN, there
exists k ∈ N such that An ∈ k and there exists x ̸∈ An such that
An∪{x} ∈ succ(k). From lemma 3.16(4) we have Asucc(n) = An∪{n},
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therefore idAn∪{(x, n)} is a bijection between An∪{x} and An∪{n},
which means An ∪ {n} = An+1 ∈ succ(k) ⊆ FIN.

2. Assume that X is a set of initial segments of natural numbers such
that

⋃
X ⊂ N. If X = {A0}, then obviously

⋃
X = A0, so assume

X ̸= {A0}. The set
⋃
X is a proper subset of N, so there is an m ∈ N

such that m /∈
⋃
X. Then

⋃
X ⊆ Am, so by (1) and lemma 3.15,⋃

X is a nonempty finite subset of N. Therefore, by remark 3.17, it
has the greatest element r. Then for every x ∈

⋃
X, x ≤ r, therefore

by lemma 3.16(4) x < succ(r). So,
⋃
X ⊆ Asucc(r). For the opposite

inclusion, suppose x ∈ Asucc(r). Since r ∈
⋃
X, there is Ai ∈ X such

that r ∈ Ai. Then x ≤ r < i implies x ∈ Ai ⊆
⋃
X.

The following theorem is very important for accomplishing our goal.

Theorem 3.20. Every infinite set has a countable subset.

Proof: Let X be an infinite set. We will prove that there is an injection
from N to X.

Formula (∃n1 ∈ N2)inj(f4, A2
n1 , X2)∨ inj(f4,N2, X2) is stratified, so we

can define a set K :=
{
f | (∃n ∈ N)inj(f,An, X) ∨ inj(f,N, X)

}
. Set K

is nonempty because for n = 0 we have A0 = ∅ by lemma 3.16(2), which
means inj(∅, A0, X). We order K by inclusion and prove that it satisfies
the remaining condition of Zorn’s lemma.

Let C ⊆ K be an arbitrary nonempty chain. We need to prove
⋃
C ∈

K. From lemma 2.13 we get that
⋃
C is an injection, rng

(⋃
C
)
⊆ X, and

dom
(⋃

C
)
⊆ N. If dom

(⋃
C
)
̸= N, then since the domain of every element

of C is an initial segment of natural numbers, from lemma 2.13 and lemma
3.19(2) there exists some n0 ∈ N such that dom

(⋃
C
)
= An0 , which implies⋃

C ∈ K. If dom
(⋃

C
)
= N, then obviously

⋃
C ∈ K. Now from Zorn’s

lemma, there exists a maximal element of K, which we denote by f0.
If dom(f0) ̸= N, then there exists n ∈ N such that dom(f0) = An. If

rng(f0) = X, we have bij(f0, An, X), which is a contradiction because An

is finite by lemma 3.19(1) and X is infinite by assumption. If rng(f0) ̸= X,
then there exists x ∈ X \ rng(f0). Define the function F := f0 ∪ {(n, x)}.
Obviously f0 ⊂ F ∈ K, which is a contradiction with the maximality of
f0. Therefore, dom(f0) = N. So, we have inj(f0,N, X), and rng(f) ∼ N is
a desired countable subset of X.
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Theorem 3.21. If X ⊆ N is an infinite set, then X is countable.

Proof: From X ⊆ N we have |X| ≤ ℵ0. On the other hand, X is an
infinite set so by theorem 3.20 there exists X0 ⊆ X such that |X0| = ℵ0.
But now we have ℵ0 = |X0| ≤ |X|, and because ≤ is antisymmetric, that
means |X| = ℵ0.

It is now easy to prove that infinity implies Dedekind-infinity, but this
result is not needed for our purposes.

4. The cardinal squaring principle

Definition 4.1. Let κ and λ be cardinal numbers. We define their level
sum as κ+L λ := {z | (∃x ∈ κ)(∃y ∈ λ)(x×{0} ∪ y×{1} ∼ z×{2})} and
their level product as κ ·L λ := {z | (∃x ∈ κ)(∃y ∈ λ)(x× y ∼ z × {2})}.

These two operations are defined in such a way as to assure that their
types are the same as the types of their operands.

Remark 4.2. However, they do not necessarily capture what we expect
of the sum and product of cardinal numbers. More precisely, their results
don’t have to be cardinal numbers. In order for κ ·L λ to be a cardinal
number, it must be nonempty, therefore there must exist x ∈ κ, y ∈ λ and
z such that x × y ∼ z × {2}. But if in particular κ := λ := |V |, then we
must have

V × V ∼ x× y ∼ z × {2} ⊆ V × {2} ⊆ V × V ,

and therefore by Cantor–Bernstein’s theorem V × V ∼ V × {2}, which is
equivalent to VCSP. The other direction is even easier: if VCSP holds, then
for every two cardinals κ and λ, for every x ∈ κ and y ∈ λ, we can restrict
the bijection between V × V and P2

1 (V ) to x× y, and its image obviously
must be of the form P2

1 (z) for some z. The same bijection can also be
restricted to x× {0} ∪ y × {1}, giving us the nonemptiness of κ+ λ.

So, definition 4.1 really defines binary operations on Card if and only if
VCSP holds. While itself a good motivation for the inclusion of VCSP as
an axiom, this argument shows that we must define the cardinal sum and
product differently in order to be able to prove VCSP. We will define the
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aforementioned operations in the usual way, but some claims will then be
stated with type raising operation T .

Definition 4.3. For every κ = |x| ∈ Card, we define T (κ) := |P1(x)|.

It is important to note that T (κ) for a cardinal number κ does not
depend on the representative x ∈ κ. It is immediate from the definition
that if κ has type n, then T (κ) has type n+ 1. We also define T 0(κ) := κ
and T k+1(κ) = T

(
T k(κ)

)
. It easily follows from the definition that if

T (κ) = T (λ) for some cardinal numbers κ and λ, then κ = λ.
In addition, we introduce the symbol for singleton ι with ι0(x) := x and

ιk+1(x) := {ιk(x)}. Obviously, if x has type n, then ιk(x) has type n+ k.

Definition 4.4. For cardinal numbers κ and λ, we define their outer sum
and outer product as

κ⊕ λ :=
{
z
∣∣ (∃x ∈ κ)(∃y ∈ λ)(z ∼ x× {0} ∪ y × {1})

}
,

κ⊙ λ := {z | (∃x ∈ κ)(∃y ∈ λ)(z ∼ x× y)}.

If κ and λ have type n, then κ⊕ λ and κ⊙ λ have type n+ 2.
It is easy to see that the outer sum and the outer product are commu-

tative. However, for n,m ∈ N ⊆ Card, n +m and n ·m are generally not
the same objects as n⊕m and n⊙m respectively.

Theorem 4.5. Let X be a set and A ⊆ X. Then |X \A| ⊕ |A| = T 2(|X|).

Proof: We need to prove (X \A)×{0}∪A×{1} ∼ P2
1 (X). Since ι2(x) is

type-level with (x, 0) and ι2(y) is type-level with (y, 1), by corollary 3.13 we
can define functions h1(x, 0) := ι2(x), x ∈ X \ A and h2(y, 1) := ι2(y), y ∈
A. Then obviously bij

(
h1 ∪ h2, (X \A)× {0} ∪A× {1},P2

1 (X)
)
.

Theorem 4.6. For every infinite cardinal number κ and for every natural
number n we have κ⊕ n = T 2(κ).

Proof: Let κ = |X| and n = |A|. We need to prove X × {0} ∪A× {1} ∼
P2

1 (X). If n = 0, then A = ∅ = A × {1}. Therefore, we need to prove
X × {0} ∼ P2

1 (X), and one bijection is (x, 0) 7→ ι2(x).
Let n ̸= 0. Then from theorem 3.20 there exists an injection f : N → X

and by theorem 3.16(6) there exists an injection g : A → N. By assump-
tion, A is a finite set, therefore rng(g) is finite (and nonempty). From
theorem 3.16(5) it follows that rng(g) has the greatest element a0.
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By application of corollary 3.13, we can define the following functions:

h1(x, 0) := ι2
(
f
(
f−1(x) + a0 + 1

))
, x ∈ rng(f)

h2(x, 0) := ι2(x), x ∈ X \ rng(f)
h3(a, 1) := ι2

(
f(g(a))

)
, a ∈ A.

Then bij(h1 ∪ h2 ∪ h3, X × {0} ∪ A × {1},P2
1 (X)) can be proved by

cases, and that means we have κ⊕ n = T 2(κ).

Theorem 4.7. ℵ0 ⊕ ℵ0 = T 2(ℵ0).

Proof: We need to prove N× {0} ∪N× {1} ∼ P2
1 (N). By corollary 3.13

we can define functions f1(n, 0) := ι2(2 ·n), n ∈ N and f2(n, 1) := ι2(2 ·n+
1), n ∈ N. Obviously, bij

(
f1 ∪ f2,N× {0} ∪ N× {1},P2

1 (N)
)
.

Theorem 4.8. For every infinite cardinal κ we have κ⊕ κ = T 2(κ).

Proof: Let κ = |X|. We need to prove X × {0} ∪ X × {1} ∼ P2
1 (X).

Formula ∃Y 2
(
Y 2 ⊆ X2 ∧ Y 2 ̸∈ FIN 3 ∧ bij(f6, (Y 2 × {01}2)4 ∪ (Y 2 ×

{11}2)4,P2
1 (Y

2)4)
)
is stratified so we define the set K :=

{
f | ∃Y

(
Y ⊆

X ∧ Y ̸∈ FIN ∧ bij(f, Y × {0} ∪ Y × {1},P2
1 (Y )

))}
, which we order by

inclusion. Because X is infinite, by theorem 3.20 there exists a countable
X0 ⊆ X. Now from theorem 4.7 we get X0×{0}∪X0×{1} ∼ P2

1 (X0), so
there exists a bijection f0 : X0×{0}∪X0×P2

1 (X0), which means f0 ∈ K,
so K is nonempty. Let C be an arbitrary nonempty chain in K. By
lemma 2.13 we get that

⋃
C is an injection. We need to prove

⋃
C ∈ K.

Formula (∃f5 ∈ C6)
(
(
⋃⋃

rng(f5)3)1 = z1
)
is stratified, so we define

the set S :=
{
z | (∃f ∈ C)

(⋃⋃
rng(f) = z

)}
. Application of the double

union on the set rng(f) is necessary to get rid of double P1. We claim⋃
S ⊆ X,

⋃
S is infinite, and rng

(⋃
C
)
= P2

1

(⋃
S
)
.

Let us prove
⋃
S ⊆ X. Let z ∈

⋃
S. Then there exists t ∈ S such

that z ∈ t. There exists f ∈ C such that t =
⋃⋃

rng(f) and z ∈ t. From
rng(f) ⊆ P2

1 (X), we have rng(f) = P2
1 (A) for some infinite A ⊆ X. But

then P2
1 (t) = P2

1

(⋃⋃
rng(f)

)
= P2

1

(⋃⋃
P2

1 (A)
)
= P2

1 (A) = rng(f).
Therefore, t ⊆ X, which implies z ∈ X.

Let us prove that
⋃
S is infinite. Assume the contrary, that it is finite.

Let us fix f ∈ C. Then rng(f) = P2
1 (A) for some infinite A ⊆ X. Now we

have A =
⋃⋃

P2
1 (A) =

⋃⋃
rng(f) ⊆

⋃
S. From lemma 3.15 we get that

A is finite, which is a contradiction.
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Let us prove rng
(⋃

C
)
= P2

1

(⋃
S
)
. If z ∈ rng

(⋃
C
)
, then by

lemma 2.13 there exists f ∈ C such that z ∈ rng(f). That means that there
exists infinite A ⊆ X such that z ∈ rng(f) = P2

1 (A). Then there exists
a ∈ A such that z = ι2(a). We have

⋃⋃
ι2(a) = a ∈ A =

⋃⋃
P2

1 (A) =⋃⋃
rng(f), so A ∈ S, and from that we get a ∈

⋃
S. Now we have

z = ι2(a) ∈ P2
1

(⋃
S
)
.

If z ∈ P2
1

(⋃
S
)
, then there exists b ∈

⋃
S such that z = ι2(b). That

means there exists B ∈ S such that b ∈ B. That implies there exists
f ∈ C such that

⋃⋃
rng(f) = B and b ∈ B. We know that rng(f) =

P2
1 (A) for some infinite A ⊆ X. From that we get z = ι2(b) ∈ P2

1 (B) =
P2

1

(⋃⋃
rng(f)

)
= P2

1

(⋃⋃
P2

1 (A)
)
= P2

1 (A) = rng(f) ⊆ rng
(⋃

C
)
. So,

there exists infinite Z :=
⋃
S ⊆ X such that rng

(⋃
C
)
= P2

1 (Z).

It remains to prove dom
(⋃

C
)
= Z×{0}∪Z×{1}. Let z ∈ dom

(⋃
C
)
,

then by lemma 2.13 there exists f ∈ C such that z ∈ dom(f) = T ×
{0} ∪ T × {1}, for some infinite T ⊆ X. Because f ⊆

⋃
C, we have

P2
1 (T ) = rng(f) ⊆ rng

(⋃
C
)
= P2

1 (Z), which implies T ⊆ Z, that is,
T ×{0} ∪ T ×{1} ⊆ Z ×{0} ∪Z ×{1}. Therefore, z ∈ Z ×{0} ∪Z ×{1},
that is, dom

(⋃
C
)
⊆ Z × {0} ∪ Z × {1}.

If z ∈ Z × {0} ∪ Z × {1}, then z = (a, s), where a ∈ Z and s ∈ {0, 1}.
Then ι2(a) ∈ P2

1 (Z) = rng
(⋃

C
)
, which means there exists f ∈ C such

that ι2(a) ∈ rng(f) = P2
1 (U), for infinite U ⊆ X. Then we have a ∈ U ,

which implies z = (a, s) ∈ U × {0} ∪U × {1} = dom(f), so z ∈ dom
(⋃

C
)
.

Finally, we can conclude
⋃
C ∈ K, and then by Zorn’s lemma, there

exists a maximal element of K. Denote it by f0 : A0 × {0} ∪ A0 × {1} →
P2

1 (A0), where A0 ⊆ X is infinite. We want to prove |X| = |A0|.
By theorem 4.5 we have T 2(|X|) = |X \A0| ⊕ |A0|. We claim that

X \A0 is finite. Assume the contrary, that it is infinite. Then there exists
a countable set B ⊆ X \ A0, which implies A0 ⊆ A0 ∪ B ⊆ X. Because
B is countable, by theorem 4.7 we get B × {0} ∪ B × {1} ∼ P2

1 (B),
so there exists a bijection g0 : B × {0} ∪ B × {1} → P2

1 (B). Obviously,
bij

(
f0∪g0, (A0∪B)×{0}∪ (A0∪B)×{1},P2

1 (A0∪B)
)
. But now we have

f0 ⊂ f0∪g0, which is a contradiction with the maximality of f0. Therefore,
X \A0 is finite. Now from theorem 4.6 we get T 2(|X|) = |X \A0|⊕ |A0| =
T 2(|A0|), that is, |X| = |A0|.
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Theorem 4.9. Let κ be an infinite cardinal and λ ≤ κ.
Then κ⊕ λ = λ⊕ κ = T 2(κ).

Proof: Let A ∈ κ and B ∈ λ. We need to prove A × {0} ∪ B × {1} ∼
P2

1 (A). From λ ≤ κ we have an injection f : B → A. Denote X := rng(f),
which is obviously equipotent with B. By theorem 4.8 we have P2

1 (X) ∼
X × {0} ∪ X × {1} ∼ X × {0} ∪ B × {1}. Then A × {0} ∪ B × {1} =
(A \ X ∪ X) × {0} ∪ B × {1} = (A \ X) × {0} ∪ (X × {0} ∪ B × {1}) ∼
P2

1 (A \X) ∪ P2
1 (X) ∼ P2

1 (A \X ∪X) = P2
1 (A).

Lemma 4.10. For any family of finitely many equipotent infinite sets,
their union is also equipotent with each of them.

Proof: Denote the number of sets with n. The claim is trivial for n = 0
and n = 1. It is enough to prove the claim for n = 2; then the claim for
n ≥ 3 follows by induction.

Let A ∼ B be arbitrary sets and define C := A\B. Then C ⊆ A, which
means inj(idC , C,A), so |C| ≤ |A|. By theorem 4.9, |A| ⊕ |C| = T 2(|A|).
On the other hand, for U := A ∪ B = C ∪ B we have U \ C = B, so by
theorem 4.5, we have |A|⊕|C| = |B|⊕|C| = |U \ C|⊕|C| = T 2(|U |). From
these two facts, |A| = |U | follows.

Theorem 4.11. ℵ0 ⊙ ℵ0 = T 2(ℵ0).

Proof: Formula (∃n1 ∈ N2)
(
a3 = ι2(n1)3∧b3 = (n1, n1)3∧ t5 = (a3, b3)5

)
is stratified, so we can define a relation g :=

{(
ι2(n), (n, n)

) ∣∣ n ∈ N
}
.

Then inj
(
g,P2

1 (N),N× N
)
, which implies T 2(ℵ0) ≤ ℵ0 ⊙ ℵ0.

By corollary 3.13 we can define a function f(m,n) := ι2
(
(m+n) · (m+

n) +m
)
for every m,n ∈ N. We need to prove that f is an injection. Let

n,m, a, b ∈ N be such that (m,n) ̸= (a, b).
The first case is when m + n ̸= a + b, without the loss of generality

m+ n < a+ b. Then m+ n+ 1 = succ(m+ n) ≤ a+ b. So we have

(m+ n) · (m+ n) +m ≤ (m+ n) · (m+ n) +m+ n+m+ n <

< succ
(
(m+ n) · (m+ n+ 2)

)
= (m+ n+ 1) · (m+ n+ 1) ≤

≤ (a+ b) · (m+ n+ 1) ≤ (a+ b) · (a+ b) ≤ (a+ b) · (a+ b) + a,

which implies f(m,n) ̸= f(a, b).
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The second case is when m + n = a + b, and then obviously m ̸= a,
without the loss of generality m < a. Then we have (m+n) ·(m+n)+m =
(a+ b) · (a+ b) +m < (a+ b) + a, and also f(m,n) ̸= f(a, b).

Therefore, f : N × N → P2
1 (N) is an injection, so we have ℵ0 × ℵ0 ≤

T 2(ℵ0). By Cantor–Bernstein’s theorem we get ℵ0 × ℵ0 = T 2(ℵ0).

Theorem 4.12. For every infinite cardinal κ we have κ⊙ κ = T 2(κ).

Proof: Let κ = |X|. We need to prove X × X ∼ P2
1 (X). Formula

∃Y 1
(
Y 1 ⊆ X1∧Y 1 ̸∈ FIN 2∧bij(f5, (Y ×Y )3),P2

1 (Y )3
)
is stratified, so we

can define the setK :=
{
f
∣∣ ∃Y (

Y ⊆ X∧Y ̸∈ FIN∧bij
(
f, Y ×Y,P2

1 (Y )
))}

,
which we order by inclusion. By theorem 3.20 there exists a countable
X0 ⊆ X and by theorem 4.11 we have X0 × X0 ∼ P2

1 (X0), so there
exists a bijection f0 : X0 × X0 → P2

1 (X0), which means f0 ∈ K, so K is
nonempty. Let C be an arbitrary nonempty chain in K. By lemma 2.13
we get that

⋃
C is an injection. We need to prove

⋃
C ∈ K.

We can prove analogously as in the proof of theorem 4.8 that there
exists an infinite Z ⊆ X such that rng

(⋃
C
)
= P2

1 (Z).

It remains to prove dom
(⋃

C
)
= Z × Z. Let z ∈ dom

(⋃
C
)
, then by

lemma 2.13 there exists f ∈ C such that z ∈ dom(f) = T × T , for some
infinite T ⊆ X. Because f ⊆

⋃
C, we have P2

1 (T ) = rng(f) ⊆ rng
(⋃

C
)
=

P2
1 (Z), which implies T ⊆ Z, that is, T ×T ⊆ Z×Z. Therefore, z ∈ Z×Z

and then we have dom
(⋃

C
)
⊆ Z × Z.

If z ∈ Z × Z, then z = (u,w), where u,w ∈ Z. Then ι2(u), ι2(w) ∈
P2

1 (Z) = rng
(⋃

C
)
, which means there exist f1, f2 ∈ C such that ι2(u) ∈

rng(f1) and ι2(w) ∈ rng(f2). Because C is a chain, without the loss of
generality we can assume f1 ⊆ f2, therefore, ι2(u), ι2(w) ∈ rng(f2) =
P2

1 (U) for some infinite U ⊆ X. Then we have u,w ∈ U , which implies
z = (u,w) ∈ U × U = dom(f2) ⊆ dom

(⋃
C
)
, so z ∈ dom

(⋃
C
)
.

We can conclude
⋃
C ∈ K, and then by Zorn’s lemma, there exists

a maximal element of K. Denote it by f0 : A0 × A0 → P2
1 (A0), where

A0 ⊆ X is infinite. Then f0 shows λ ⊙ λ = T 2(λ), where λ := |A0|. It
remains to prove |A0| = |X|.

From A0 ⊆ X, we get |A0| ≤ |X|. Assume |A0| < |X|. Because ≤ is
well-order, either |X \A0| ≤ |A0| or |A0| < |X \A0|. If |X \A0| ≤ |A0|,
by theorems 4.5 and 4.9 we have T 2(|X|) = |X \A0| ⊕ |A0| = T 2(|A0|), so
we get |X| = |A0|, a contradiction. Therefore, |A0| < |X \A0|, so there
exists an injection from A0 to X \A0, which is not a bijection; hence there
exists Z ⊂ X \A0 such that |Z| = |A0| = λ.
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By distributivity we have (A0∪Z)× (A0∪Z) = (A0×A0)∪ (A0×Z)∪
(Z ×A0) ∪ (Z ×Z). Now from A0 ∼ Z we get A0 ×Z ∼ Z ×A0 ∼ Z ×Z,
and then from lemma 4.10

(A0 × Z) ∪ (Z ×A0) ∪ (Z × Z) ∼ Z × Z ∼ P2
1 (Z).

Therefore, there exists a bijection g : (A0×Z)∪(Z×A0)∪(Z×Z) → P2
1 (Z).

Define h := (f0 ∪ g) : (A0 ∪ Z) × (A0 ∪ Z) → P2
1 (A0 ∪ Z). Since

A0 ∩ Z = ∅, h is a bijection such that f0 ⊆ h, and h ∈ K, because A0 ∪ Z
is an infinite subset of X.

We also have f0 ̸= h because for any z ∈ Z ̸= ∅,
(
(z, z), ι2(z)

)
∈ h \ f0,

since Z ⊆ X \ A0. Now we have f0 ⊂ h ∈ K, a contradiction with the
maximality of f0.

Therefore, the assumption |A0| < |X| was wrong, which implies |X| ≤
|A0|, so λ = |A0| = |X| = κ. Now κ⊙ κ = λ⊙ λ = T 2(λ) = T 2(κ).

Remark 4.13. The proofs of theorems about cardinal arithmetic are good
examples of why working with Kuratowski’s ordered pair (or any other
pairs that are not type-level) is tedious. Even the statements of theorems
must be modified in order to accommodate this. Using type-level ordered
pairs greatly reduces the complexity of said proofs.

Theorem 4.14. In NFU+ Inf + AC there exist type-level ordered pairs.

Proof: Denote the cardinal number of the universe as |V | =: κ. We know
from the axiom of infinity that V is an infinite set, so κ is an infinite
cardinal number. From theorem 4.12 we have κ⊙κ = T 2(κ), which means
there is a bijection F : V × V → P2

1 (V ).

Formula F 6
(
(x1, y1)3

)3
= ι2(w1)3 is stratified, so we can define the

set Sxy := {w | F
(
(x, y)

)
= ι2(w)}. Note that Sxy is a singleton: for if

z1, z2 ∈ Sxy, then ι
2(z1) = F

(
(x, y)

)
= ι2(z2), which implies z1 = z2.

For x, y ∈ V we define new ordered pair ⟨x, y⟩ :=
⋃
Sxy. Let us prove

that it satisfies the usual property of ordered pairs and that it is type-level.
Let us first prove the usual property. Let x, y, a, b ∈ V be such that

⟨x, y⟩ = ⟨a, b⟩. By definition, we have F
(
(x, y)

)
= ι2(⟨x, y⟩) and F

(
(a, b)

)
=

ι2(⟨a, b⟩), so F
(
(x, y)

)
= F

(
(a, b)

)
. Since F is an injection, we have

(x, y) = (a, b), which implies x = a and y = b. If x = a and y = b, then
ι2(⟨x, y⟩) = F

(
(x, y)

)
= F

(
(a, b)

)
= ι2(⟨a, b⟩), which implies ⟨x, y⟩ = ⟨a, b⟩.
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Let us prove that they are type-level. Let x, y ∈ V be arbitrary. We
have

z1 ∈ ⟨x, y⟩2 ↔ ∃w2
(
F 7

(
(x2, y2)4

)4
= ι2(w2)4 ∧ z1 ∈ w2

)
.

That proves that if x and y have type n, then ⟨x, y⟩ has type n. Therefore,
we have type-level ordered pairs.

Remark 4.15. Since here we’re primarily concerned with set theory and
not with logic, we are somewhat sloppy with respect to proving existence
versus “pinpointing” some mathematical object. However, in the interest
of completeness, it is important to note that using the logical principle
of existential instantiation [3] we can in fact, having proved ∃F bij

(
F, V ×

V,P2
1 (V )

)
, expand the signature of our theory by a new constant symbol F

and an axiom bij
(
F, V ×V,P2

1 (V )
)
, and it will be a conservative extension.

Then the new constant symbol can be used in other ways, for instance, to
define a two-place function term for the new ordered pair ⟨ , ⟩.

5. Axiomatic extension

We will briefly show how to use the third approach from the introduction.
We start by introducing axioms of NFU (the axiom of extensionality, the
axiom of sethood, and the axiom of stratified comprehension). Next, we
need a few basic notions independent of the usage of ordered pairs.

We are then able to introduce the axiom of choice. The next step is
to introduce natural numbers or, more precisely, the notion of finite sets.
Then we are able to introduce the axiom of infinity.

The only thing left is the introduction of the notion of (Kuratowski’s)
bijection and then we can state the universe cardinal squaring principle.

Definition 5.1.

1. For x, y ∈ V we define their Kuratowski’s ordered pair
(x, y)K :=

{
{x}, {x, y}

}
.

2. For X,Y ∈ SET we define their Kuratowski’s product
X ×K Y := {(x, y)K | x ∈ X ∧ y ∈ Y }.

3. For X and Y we define the notion of Kuratowski’s bijection be-
tween them as bijK(f,X, Y ) :⇔ f ⊆ X ×K Y ∧∀x∃!y

(
(x, y)K ∈ f

)
∧

∧ ∀y∃!x
(
(x, y)K ∈ f

)
.
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Universe cardinal squaring principle:

V ̸∈ FIN → ∃f bijK
(
f, V ×K V,P2

1 (V )
)
.

The universe cardinal squaring principle can be interpreted as a claim
that there exists a (Kuratowski’s) bijection between V ×K V and P2

1 (V ).
The finishing touch is theorem 4.14, and via it, we can define (see

remark 4.15) type-level ordered pairs. We can now develop the theory in
any way needed. Notions independent of ordered pairs will stay the same,
and few should be redefined, replacing Kuratowski’s definitions with type-
level ones.

One important notion that should also be redefined is the notion of
applying the function to an argument, since now the type of f must be
only one higher than the type of x, in order for f(x) to be meaningful and
have a type (equal to the type of x).

The next two results were given to us by an anonymous reviewer.

Theorem 5.2. NFU+ OP proves VCSP.

Proof: Denote with (x, y)K Kuratowski’s ordered pairs and with (x, y)
type-level ordered pairs. Assume V ̸∈ FIN. Since (x, y)K and ι2

(
(x, y)

)
have the same type, by corollary 3.13 we can define a function f

(
(x, y)K

)
=

ι2
(
(x, y)

)
for every x, y ∈ V . Function f is obviously an injection from

V ×K V to P2
1 (V ). On the other hand, function ι2(x) 7→ (x, x)K is ob-

viously an injection from P2
1 (V ) → V ×K V . Now Cantor–Bernstein’s

theorem implies that there exists a bijection between V ×K V and P2
1 (V ).

Therefore, the universe cardinal squaring principle holds.

Theorem 5.3. NFU+ Inf + VCSP does not prove AC.

Proof (Sketch of proof:): First, we know that NFU + Inf interprets
NFU+OP: within any model M of NFU+ Inf we can find a smaller model
M ′ of NFU + OP. More precisely, M ′ is obtained as a doubly iterated
partitive set of V in M [5]. Therefore, the truth of Zermelo’s theorem (and
also of AC) is the same in both M and M ′.

We also know that NFU+Inf does not prove AC [11]: there is a modelM
of NFU+ Inf which does not validate AC. If we carry out the construction
from the previous paragraph, we obtain M ′ which validates NFU and also
Inf [9], while proving VCSP by theorem 5.2 and not validating AC (since if
AC were to hold in M ′, it would also hold in M by the previous paragraph,
which is a contradiction).
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Conclusion

It is apparent that non-type-level ordered pairs are causing many difficul-
ties. By proving the cardinal squaring principle using Kuratowski’s ordered
pairs we are able to justify NFU+ Inf+AC+VCSP. Not only that, we have
presented the development of NFU with Kuratowski’s ordered pairs that
can be used for further reference, without the need to go through it again
every time type-level ordered pairs are needed.

It is worth emphasizing that everything in this article is done without
the appeal to Rosser’s axiom of counting, which is prominently used in
Rosser’s [13] and Holmes’ book [7]. In our opinion, this shows that the
usage of the axiom of counting, although sometimes making proofs simpler,
is not essential to our approach.
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