Bulletin of the Section of Logic Volume 45/1 (2016), pp. 53-63

 $\rm http://dx.doi.org/10.18778/0138\text{-}0680.45.1.04$

Young Bae Jun, Eun Hwan Roh and Seok Zun Song*

COMMUTATIVE ENERGETIC SUBSETS OF BCK-ALGEBRAS

Abstract

The notions of a C-energetic subset and (anti) permeable C-value in BCK-algebras are introduced, and related properties are investigated. Conditions for an element t in [0,1] to be an (anti) permeable C-value are provided. Also conditions for a subset to be a C-energetic subset are discussed. We decompose BCK-algebra by a partition which consists of a C-energetic subset and a commutative ideal.

Keywords: S-energetic subset, I-energetic subset, C-energetic subset, (anti) fuzzy commutative ideal, (anti) permeable I-value, (anti) permeable C-value.

 $\it 2010\ Mathematics\ Subject\ Classification.\ 06F35,\ 03G25,\ 08A72.$

1. Introduction

Jun et al. [3] introduced the notions of energetic (resp. right vanished, right stable) subsets and (anti) permeable values in BCK/BCI-algebras. Using the notion of (anti) fuzzy subalgebras/ideals of BCK/BCI-algebras, they investigated relations among subalgebras/ideals, energetic subsets, (anti) permeable values, right vanished subsets and right stable subsets.

^{*}Corresponding author.

In this article, we introduce the notions of a C-energetic subset and (anti) permeable C-value in BCK-algebras, and investigate related properties. We provide conditions for an element t in [0,1] to be an (anti) permeable C-value. We also discuss conditions for a subset to be a C-energetic subset. We show that a BCK-algebra is decomposed by a partition which consists of a C-energetic subset and a commutative ideal.

2. Preliminaries

A BCK/BCI-algebra is an important class of logical algebras introduced by K. Iséki and was extensively investigated by several researchers.

An algebra (X; *, 0) of type (2, 0) is called a BCI-algebra it satisfies the following conditions

- (I) $(\forall x, y, z \in X)$ (((x * y) * (x * z)) * (z * y) = 0),
- (II) $(\forall x, y \in X) ((x * (x * y)) * y = 0),$
- (III) $(\forall x \in X) (x * x = 0),$
- (IV) $(\forall x, y \in X) (x * y = 0, y * x = 0 \Rightarrow x = y).$

If a BCI-algebra X satisfies the following identity

(V)
$$(\forall x \in X) (0 * x = 0),$$

then X is called a BCK-algebra. Any BCK/BCI-algebra X satisfies the following axioms

$$(\forall x \in X) (x * 0 = x), \tag{2.1}$$

$$(\forall x, y, z \in X) (x \le y \Rightarrow x * z \le y * z, z * y \le z * x), \qquad (2.2)$$

$$(\forall x, y, z \in X) ((x * y) * z = (x * z) * y), \qquad (2.3)$$

$$(\forall x, y, z \in X) ((x * z) * (y * z) \le x * y) \tag{2.4}$$

where $x \leq y$ if and only if x * y = 0. A nonempty subset S of a BCK/BCI-algebra X is called a *subalgebra* of X if $x * y \in S$ for all $x, y \in S$. A subset I of a BCK/BCI-algebra X is called an *ideal* of X if it satisfies

$$0 \in I, \tag{2.5}$$

$$(\forall x \in X) (\forall y \in I) (x * y \in I \implies x \in I). \tag{2.6}$$

A subset I of a BCK-algebra X is called a *commutative ideal* (see [5]) of X if it satisfies (2.5) and

$$(\forall x, y \in X)(\forall z \in I)((x * y) * z \in I \implies x * (y * (y * x)) \in I). \tag{2.7}$$

Observe that every commutative ideal is an ideal, but the converse is not true (see [6]).

We refer the reader to the books [2, 6] for further information regarding BCK/BCI-algebras.

The concept of fuzzy sets was introduced by Zadeh [7]. Let X be a set. The mapping $f: X \to [0,1]$ is called a fuzzy set in X.

A fuzzy set f in a BCK/BCI-algebra X is called a fuzzy subalgebra of X if it satisfies

$$(\forall x, y \in X) \left(f(x * y) \ge \min\{f(x), f(y)\} \right). \tag{2.8}$$

A fuzzy set f in a BCK/BCI-algebra X is called a fuzzy ideal of X if it satisfies

$$(\forall x \in X) (f(0) \ge f(x)). \tag{2.9}$$

$$(\forall x, y \in X) (f(x) \ge \min\{f(x * y), f(y)\}).$$
 (2.10)

Note that every fuzzy ideal f of a BCK/BCI-algebra X satisfies

$$(\forall x, y \in X) (x \le y \Rightarrow f(x) \ge f(y)). \tag{2.11}$$

A fuzzy set f in a BCK-algebra X is called a fuzzy commutative ideal (see [4]) of X if it satisfies (2.9) and

$$(\forall x, y, z \in X) (f(x * (y * (y * x))) \ge \min\{f((x * y) * z), f(z)\}). \tag{2.12}$$

For a fuzzy set f in X and $t \in [0, 1]$, the (strong) upper (resp. lower) t-level sets are defined as follows:

$$U(f;t) := \{x \in X \mid f(x) \ge t\}, \quad U^*(f;t) := \{x \in X \mid f(x) > t\},$$

$$L(f;t) := \{x \in X \mid f(x) < t\}, \quad L^*(f;t) := \{x \in X \mid f(x) < t\}.$$

3. Commutative energetic subsets

In what follows, let X denote a BCK-algebra unless otherwise specified.

Definition 3.1 ([3]). A non-empty subset A of X is said to be S-energetic if it satisfies

$$(\forall a, b \in X) (a * b \in A \Rightarrow \{a, b\} \cap A \neq \emptyset). \tag{3.1}$$

Definition 3.2 ([3]). A non-empty subset A of X is said to be I-energetic if it satisfies

$$(\forall x, y \in X) (y \in A \Rightarrow \{x, y * x\} \cap A \neq \emptyset). \tag{3.2}$$

Lemma 3.3 ([3]). For any subset A of X, if $X \setminus A$ is an ideal of X, then A is I-energetic.

Definition 3.4. A non-empty subset A of X is said to be commutative energetic (briefly, C-energetic) if it satisfies

$$(\forall x, y, z \in X) (x * (y * (y * x)) \in A \Rightarrow \{z, (x * y) * z\} \cap A \neq \emptyset). \quad (3.3)$$

Example 3.5. Let $X = \{0, 1, 2, 3, 4\}$ be a BCK-algebra with the following Cayley table

It is routine to verify that $A := \{3, 4\}$ is a C-energetic subset of X.

We consider relations between an I-energetic subset and a C-energetic subset.

Theorem 3.6. Every C-energetic subset is I-energetic.

PROOF: Let A be a C-energetic subset of X. Let $x, y \in X$ be such that $y \in A$. Then $y * (0 * (0 * y)) = y \in A$, and so $\{x, (y * 0) * x\} \cap A \neq \emptyset$ by (3.3). It follows from (2.1) that $\{x, y * x\} \cap A \neq \emptyset$. Hence A is an I-energetic subset of X.

The converse of Theorem 3.6 is not true as seen in the following examples.

Example 3.7. Let $X = \{0, 1, 2, 3, 4\}$ be a BCK-algebra with the following Cayley table

Take $A := \{1, 2, 4\}$. Then $X \setminus A = \{0, 3\}$ is an ideal of X. Hence, by Lemma 3.3, A is an I-energetic subset of X. But it is not C-energetic since

$$1*(4*(4*1)) = 1 \in A \text{ and } \{3, (1*4)*3\} \cap A = \emptyset.$$

THEOREM 3.8. For any nonempty subset A of X, if $X \setminus A$ is a commutative ideal of X, then A is C-energetic.

PROOF: Assume that A is not C-energetic. Then for any $x, y \in X$ with $x * (y * (y * x)) \in A$,

there exists $z \in X$ such that $\{z, (x * y) * z\} \cap A = \emptyset$. It follows that $(x * y) * z \in X \setminus A$ and $z \in X \setminus A$.

Since $X \setminus A$ is a commutative ideal of X, we have $x * (y * (y * x)) \in X \setminus A$, that is, $x*(y*(y*x)) \notin A$. This is a contradiction, and so A is a C-energetic subset of X.

COROLLARY 3.9. For any nonempty subset A of X, if $X \setminus A$ is a commutative ideal of X, then A is I-energetic.

Theorem 3.10. Let A be a nonempty subset of X with $0 \notin A$. If A is C-energetic, then $X \setminus A$ is a commutative ideal of X.

PROOF: Obviously $0 \in X \setminus A$. Let $x, y, z \in X$ be such that $z \in X \setminus A$ and $(x*y)*z \in X \setminus A$. Assume that $x*(y*(y*x)) \in A$. Then $\{z, (x*y)*z\} \cap A \neq \emptyset$ by (3.3), which implies that $z \in A$ or $(x*y)*z \in A$. This is a contradiction, and so $x*(y*(y*x)) \in X \setminus A$. This shows that $X \setminus A$ is a commutative ideal of X.

COROLLARY 3.11. Let A be a nonempty subset of X with $0 \notin A$. If A is C-energetic, then $X \setminus A$ is an ideal and hence a subalgebra of X.

Theorem 3.12. If f is a fuzzy commutative ideal of X, then the nonempty lower t-level set L(f;t) is a C-energetic subset of X.

PROOF: Assume that $L(f;t) \neq \emptyset$ for $t \in [0,1]$. Let $x, y \in X$ be such that $x*(y*(y*x)) \in L(f;t)$. Then

$$t \ge f(x * (y * (y * x))) \ge \min\{f((x * y) * z), f(z)\}\$$

for all $z \in X$, which implies that $f((x * y) * z) \le t$ or $f(z) \le t$, that is, $(x * y) * z \in L(f;t)$ or $z \in L(f;t)$. Thus $\{z, (x * y) * z\} \cap L(f;t) \ne \emptyset$, and therefore L(f;t) is a C-energetic subset of X.

COROLLARY 3.13. If f is a fuzzy commutative ideal of X, then the nonempty strong lower t-level set $L^*(f;t)$ is a C-energetic subset of X.

Since $L(f;t) \cup U^*(f;t) = X$ and $L(f;t) \cap U^*(f;t) = \emptyset$ for all $t \in [0,1]$, we have the following corollary.

COROLLARY 3.14. If f is a fuzzy commutative ideal of X, then $U^*(f;t)$ is empty or a commutative ideal of X for all $t \in [0,1]$.

Definition 3.15 ([1]). A fuzzy set f in X is called an anti-fuzzy ideal of X if it satisfies

$$(\forall x \in X) (f(0) \le f(x)). \tag{3.4}$$

$$(\forall x, y \in X) (f(x) \le \max\{f(x * y), f(y)\}). \tag{3.5}$$

Definition 3.16. A fuzzy set f in X is called an anti-fuzzy commutative ideal of X if it satisfies (3.4) and

$$(\forall x, y, z \in X) (f(x * (y * (y * x))) \le \max\{f((x * y) * z), f(z)\}).$$
 (3.6)

Example 3.17. Consider a BCK-algebra $X = \{0, a, b, c\}$ with the following Cayley table

Define a fuzzy set f in X as follows

$$f: X \to [0, 1], \quad x \mapsto \begin{cases} t_0 & \text{if } x = 0, \\ t_1 & \text{if } x = c, \\ t_2 & \text{if } x \in \{a, b\} \end{cases}$$

where $t_0 < t_1 < t_2$ in [0,1]. It is routine to verify that f is an anti-fuzzy commutative ideal of X.

THEOREM 3.18. Every anti fuzzy commutative ideal is an anti fuzzy ideal. PROOF: Let f be an anti fuzzy commutative ideal of X. If we put y = 0 in (3.6), then

$$\max\{f(x*z), f(z)\} = \max\{f((x*0)*z), f(z)\}$$

$$\geq f(x*(0*(0*x))) = f(x).$$

Hence f is an anti fuzzy ideal of X.

The converse of Theorem 3.18 is not true as seen in the following example.

Example 3.19. Let $X = \{0, 1, 2, 3, 4\}$ be a BCK-algebra with the following Cayley table

Define a fuzzy set f in X as follows

$$f: X \to [0,1], \quad x \mapsto \begin{cases} s_0 & \text{if } x = 0, \\ s_1 & \text{if } x = 1, \\ s_2 & \text{if } x \in \{2,3,4\} \end{cases}$$

where $s_0 < s_1 < s_2$ in [0,1]. Then f is an anti-fuzzy ideal of X. But it is not an anti-fuzzy commutative ideal of X since

$$f(2*(3*(3*2))) \nleq \max\{f(0), f((2*3)*0)\}.$$

We provide a characterization of an anti fuzzy commutative ideal. Theorem 3.20. For a fuzzy set f in X, the following are equivalent.

- (1) f is an anti-fuzzy commutative ideal of X.
- (2) f is an anti-fuzzy ideal of X satisfying the following condition

$$(\forall x, y \in X) (f(x * (y * (y * x))) \le f(x * y)). \tag{3.7}$$

PROOF: Assume that f is an anti fuzzy commutative ideal of X. Then f is an anti fuzzy ideal of X (see Theorem 3.18). Taking z = 0 in (3.6) and using (3.4) and (2.1), we have (3.7).

Conversely, suppose that (2) is valid. Then

$$f(x * y) \le \max\{f((x * y) * z), f(z)\}\tag{3.8}$$

for all $x, y, z \in X$. Combining (3.7) and (3.8), we get (3.6). The proof is complete. \Box

DEFINITION 3.21 ([3]). Let f be a fuzzy set in X. A number $t \in [0,1]$ is called a permeable I-value for f if $U(f;t) \neq \emptyset$ and the following assertion is valid.

$$(\forall x, y \in X) (f(y) \ge t \Rightarrow \max\{f(y * x), f(x)\} \ge t). \tag{3.9}$$

DEFINITION 3.22. Let f be a fuzzy set in X. A number $t \in [0,1]$ is called a permeable C-value for f if $U(f;t) \neq \emptyset$ and the following assertion is valid.

$$f(x * (y * (y * x))) \ge t \implies \max\{f((x * y) * z), f(z)\} \ge t$$
 (3.10)

for all $x, y, z \in X$.

Example 3.23. Consider a BCK-algebra $X = \{0, a, b, c\}$ which is given in Example 3.17. Let f be a fuzzy set in X defined by f(0) = 0.3, f(a) = f(b) = 0.7 and f(c) = 0.5. If $t \in (0.5, 0.7]$, then $U(f;t) = \{a, b\}$ and it is easy to check that t is a permeable C-value for f.

Theorem 3.24. Let f be a fuzzy commutative ideal of X. If $t \in [0,1]$ is a permeable C-value for f, then the nonempty upper t-level set U(f;t) is a C-energetic subset of X.

PROOF: Assume that $U(f;t) \neq \emptyset$ for $t \in [0,1]$. Let $x,y \in X$ be such that $x*(y*(y*x)) \in U(f;t)$.

Then $f(x*(y*(y*x))) \ge t$, and so $\max\{f((x*y)*z), f(z)\} \ge t$ by (3.10). It follows that $f((x*y)*z) \ge t$ or $f(z) \ge t$, that is, $(x*y)*z \in U(f;t)$ or $z \in U(f;t)$. Hence $\{z, (x*y)*z\} \cap U(f;t) \ne \emptyset$, and therefore U(f;t) is a C-energetic subset of X.

Since $U(f;t) \cup L^*(f;t) = X$ and $U(f;t) \cap L^*(f;t) = \emptyset$ for all $t \in [0,1]$, we have the following corollary.

COROLLARY 3.25. Let f be a fuzzy commutative ideal of X. If $t \in [0,1]$ is a permeable C-value for f, then $L^*(f;t)$ is empty or a commutative ideal of X.

THEOREM 3.26. For a fuzzy set f in X, if there exists a subset K of [0,1] such that $\{U(f;t), L^*(f;t)\}$ is a partition of X and $L^*(f;t)$ is a commutative ideal of X for all $t \in K$, then t is a permeable C-value for f.

PROOF: Assume that $f(x*(y*(y*x))) \ge t$ for any $x, y \in X$. Then $x*(y*(y*x)) \in U(f;t)$,

and so $\{z,(x*y)*z\}\cap U(f;t)\neq\emptyset$ since U(f;t) is a C-energetic subset of X. It follows that $z\in U(f;t)$ or $(x*y)*z\in U(f;t)$ and so that

$$\max\{f((x*y)*z), f(z)\} \ge t.$$

Therefore t is a permeable C-value for f.

THEOREM 3.27. Let f be a fuzzy set in X with $U(f;t) \neq \emptyset$ for $t \in [0,1]$. If f is an anti-fuzzy commutative ideal of X, then t is a permeable C-value for f.

PROOF: Let $x, y, z \in X$ be such that $f(x * (y * (y * x))) \ge t$. Then

$$t \le f(x * (y * (y * x))) \le \max\{f((x * y) * z), f(z)\}\$$

by (3.6). Hence t is a permeable C-value for f.

Theorem 3.28. If f is an anti-fuzzy commutative ideal of X, then

$$(\forall t \in [0,1]) (U(f;t) \neq \emptyset \Rightarrow U(f;t) \text{ is a C-energetic subset of X}).$$

PROOF: Let $x, y, z \in X$ be such that $x * (y * (y * x)) \in U(f;t)$. Then $f(x * (y * (y * x))) \ge t$,

which implies from (3.6) that

$$t \le f(x * (y * (y * x))) \le \max\{f((x * y) * z), f(z)\}.$$

Hence $f((x*y)*z) \ge t$ or $f(z) \ge t$, that is, $(x*y)*z \in U(f;t)$ or $z \in U(f;t)$. Thus $\{z, (x*y)*z\} \cap U(f;t) \ne \emptyset$, and therefore U(f;t) is a C-energetic subset of X.

Theorem 3.29. For any fuzzy set f in X, every permeable C-value for f is a permeable I-value for f.

PROOF: Let $t \in [0,1]$ be a permeable C-value for f. Assume that $f(y) \ge t$ for all $y \in X$. Then

$$t \le f(y) = f((y * (0 * (0 * y)))$$

by (V) and (2.1), and so

$$t \le \max\{f((y*0)*z), f(z)\} = \max\{f(y*z), f(z)\}\$$

for all $y, z \in X$ by (3.10) and (2.1). Therefore t is a permeable I-value for f.

DEFINITION 3.30 ([3]). Let f be a fuzzy set in X. A number $t \in [0,1]$ is called an anti permeable I-value for f if $L(f;t) \neq \emptyset$ and the following assertion is valid.

$$(\forall x, y \in X) (f(y) < t \Rightarrow \min\{f(y * x), f(x)\} < t). \tag{3.11}$$

THEOREM 3.31. Let f be a fuzzy set in X with $L(f;t) \neq \emptyset$ for $t \in [0,1]$. If f is a fuzzy ideal of X, then t is an anti permeable I-value for f.

PROOF: Let $f(y) \leq t$ for $y \in X$. Then

$$\min\{f(y*x), f(x)\} \le f(y) \le t$$

for all $x \in X$ by (2.10). Hence t is an anti permeable I-value for f. \square

DEFINITION 3.32. Let f be a fuzzy set in X. A number $t \in [0,1]$ is called an anti permeable C-value for f if $L(f;t) \neq \emptyset$ and the following assertion is valid.

$$f(x * (y * (y * x))) \le t \Rightarrow \min\{f((x * y) * z), f(z)\} \le t$$
 (3.12)

for all $x, y, z \in X$.

THEOREM 3.33. Let f be a fuzzy set in X with $L(f;t) \neq \emptyset$ for $t \in [0,1]$. If f is a fuzzy commutative ideal of X, then t is an anti-permeable C-value for f.

PROOF: Let $x, y \in X$ be such that $f(x * (y * (y * x))) \le t$. Then

$$\min\{f((x*y)*z), f(z)\} \le f(x*(y*(y*x))) \le t$$

for all $z \in X$ by (2.12). Hence t is an anti permeable C-value for f.

Theorem 3.34. Let f be an anti-fuzzy commutative ideal of X. If $t \in [0,1]$ is an anti-permeable C-value for f, then the lower t-level set L(f;t) is a C-energetic subset of X.

PROOF: Let $x, y \in X$ be such that $x * (y * (y * x)) \in L(f;t)$. Then $f(x * (y * (y * x))) \le t$ and so $\min\{f((x * y) * z), f(z)\} \le t$ by (3.12). It follows that $(x * y) * z \in L(f;t)$ or $z \in L(f;t)$. Hence $\{z, (x * y) * z\} \cap L(f;t) \ne \emptyset$, and therefore L(f;t) is a C-energetic subset of X.

COROLLARY 3.35. Let f be an anti fuzzy commutative ideal of X. If $t \in [0,1]$ is an anti permeable C-value for f, then $U^*(f;t)$ is empty or a commutative ideal of X.

THEOREM 3.36. For a fuzzy set f in X, if there exists a subset K of [0,1] such that $\{U^*(f;t),L(f;t)\}$ is a partition of X and $U^*(f;t)$ is a commutative ideal of X for all $t \in K$, then t is an anti permeable C-value for f.

PROOF: Assume that $f(x*(y*(y*x))) \le t$ for any $x, y \in X$. Then $x*(y*(y*x)) \in L(f;t)$,

and so $\{z, (x*y)*z\} \cap L(f;t) \neq \emptyset$ for all $z \in X$ since L(f;t) is a C-energetic subset of X. It follows that $f(z) \leq t$ or $f((x*y)*z) \leq t$, and so that

$$\min\{f((x*y)*z), f(z)\} \le t.$$

Therefore t is an anti permeable C-value for f.

Acknowledgement

The authors wish to thank the anonymous reviewer(s) for the valuable suggestions.

References

- [1] S. M. Hong and Y. B. Jun, Anti fuzzy ideals in BCK-algebras, Kyungpook Math. J. 38 (1998), pp. 145–150.
- [2] Y. Huang, BCI-algebra, Science Press, Beijing, 2006.
- [3] Y. B. Jun, S. S. Ahn and E. H. Roh, Energetic subsets and permeable values with applications in BCK/BCI-algebras, Appl. Math. Sci. 7 (2013), no. 89, pp. 4425–4438.
- [4] Y. B. Jun and E. H. Roh, Fuzzy commutative ideals of BCK-algebras, Fuzzy Sets and Systems 64 (1994), pp. 401–405.
- [5] J. Meng, Commutative ideals in BCK-algebras, Pure Appl. Math. (in China) 9 (1991), pp. 49–53.
- [6] J. Meng and Y. B. Jun, BCK-algebras, Kyungmoonsa Co. Seoul, Korea (1994).
- [7] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), pp. 338–353.

Department of Mathematics Education (and RINS) Gyeongsang National University, Jinju 52828, Korea e-mail: skywine@gmail.com

Department of Mathematics Education, Chinju National University of Education, Jinju 660-756, Korea e-mail: idealmath@gmail.com

Department of Mathematics, Jeju National University, Jeju 690-756, Korea e-mail: szsong@jejunu.ac.kr