
Bulletin of the Section of Logic
Volume 45/1 (2016), pp. 1–15

http://dx.doi.org/10.18778/0138-0680.45.1.01

Fernando Ferreira and Gilda Ferreira

AN ELEMENTARY PROOF OF STRONG

NORMALIZATION FOR ATOMIC F∗

Abstract

We give an elementary proof (in the sense that it is formalizable in Peano

arithmetic) of the strong normalization of the atomic polymorphic calculus Fat

(a predicative restriction of Girard’s system F).

Keywords: Predicative polymorphism, strong normalization, elementary

proofs, lambda-calculus.

1. Introduction

It is well-known that the (impredicative) polymorphic system F of Jean-

Yves Girard enjoys the property of strong normalization. A particularly

perspicuous description of Girard’s system and attendant proof of (strong)

normalization can be found in [7]. The normalization proof is quite in-

volved, using the notion of “reducibility candidate.” Moreover, it is not

formalizable in full second-order arithmetic (a very strong system). This

is not a defect of Girard’s proof: No such proof can be formalized in full

second-order arithmetic since that would provide a consistency proof of this

system within itself, contradicting Gödel’s second incompleteness theorem.

In 2006, the first author introduced the system Fat of atomic polymorphism

[4]1. Basically, Fat is the system obtained from Girard’s F by restricting

∗2010 Mathematics Subject Classification. 03F07, 03B20, 03B40
1Paper [4] uses a different terminology. It denotes by atomic PSOLi what we now

call system Fat.

2 Fernando Ferreira and Gilda Ferreira

the range of type variables to atomic types. Although this is a severe re-

striction, Fat is able to embed the full intuitionistic propositional calculus

IPC (i.e., intuitionistic logic with implication, conjunction, disjunction and

falsum). Moreover, Fat is a system with good proof-theoretic properties

and proved to be a natural (and useful) framework for studying intuitionis-

tic propositional logic. Elegant alternative proofs of properties of full IPC,

such as strong normalization or the disjunction property were obtained via

its embedding into Fat (see [5, 6]). Note that, contrarily to IPC, Fat has no

“bad” connectives (see Girard’s criticism on some natural deduction IPC

rules in [7], p. 74) and no commuting conversions. Moreover, due to the

restriction on the range of type variables, system Fat is predicative (as op-

posed to F), has a natural notion of subformula (subtype) and enjoys the

subformula property.

Since Girard’s system F is strongly normalizing, Fat inherits this prop-

erty. But strong normalization for the atomic polymorphic calculus can

be proved in a much simpler way, avoiding the intricate resources needed

for system F. The authors proved in [5], in a predicative manner, that Fat

enjoys the property of strong normalization for βη-conversions. Our proof

uses William Tait’s technique of reducibility, as introduced in [10]. Of

course, Girard’s reducibility candidates are not used in the proof (they are

only needed to deal with impredicativity). That notwithstanding, the proof
is not elementary in the sense of not being formalizable in Peano arithmetic.

This is a feature of Tait’s technique. In [5] we can read [referring to strong

normalization in Fat]: “The concrete proof that we presented... is not for-
malizable in Peano arithmetic (let alone in primitive recursive arithmetic).
This is incidental, we think. It would be nice to investigate whether, for
instance, the proof technique used by Felix Joachimski and Ralph Matthes
in [8] also applies to our system Fat of atomic polymorphism”. We show in

this paper that there is, in fact, a proof of the strong normalization of Fat

formalizable in Peano arithmetic, and the strategy of our proof relies, pre-

cisely, on Joachimski and Matthes’ technique: It is possible to extend their

argument in [8] to the second order cases typical of atomic polymorphism.

The paper is organized as follows. In the next section, we describe the

system Fat and introduce the main concepts of this paper. System Fat is

constituted by typed terms and these are generated in the usual way. In

Section 3, we describe an unusual way of enumerating the terms of Fat. It is

not trivial to show that this alternative construction gives exactly the terms

of Fat. The advantage of the enumeration is that it is suitable for showing,

An Elementary Proof of Strong Normalization for Atomic F 3

by induction on the new build up, that all terms are strongly normalizable

for βη-conversions. This is done in Section 4. In the final section, we

make some comments about elementary versus finitistic proofs and raise

some questions. It seems to us that proofs of strong normalization using

the technique followed here (via the new enumeration of terms), although

formalizable in Peano arithmetic, are not finitistic in the sense of not being

formalizable in primitive recursive arithmetic.

2. A predicative variant of Girard’s system F

The system Fat, like Girard’s system F, has only two generators for types

(formulas): implication and second-order universal quantification. Types
are constructed from atomic types (propositional constants P,Q,R, . . . and
type variablesX,Y, Z, . . .) by means of two type-forming operations, → and

∀, in the following way:

(i) Atomic types are types.

(ii) If A and B are types then A → B is a type.

(iii) If A is a type and X is a type variable then ∀X.A is a type.

By regarding types as formulas, we have the usual definitions of free
and bound (type) variables in a type. As usual, we can freely rename the

bound variables in a type. Given a type A, a type variable X and an atomic
type C, we write A[C/X] for the type obtained from A by substituting the

free occurrences of X in A by C (without loss of generality, if C is itself

a variable, we may assume that it is free for X in A). The terms of Fat are

generated by the following clauses:

(i) For each type A there are countably infinite many assumption vari-
ables of type A, xA, yA, zA, etc. Assumption variables are terms.

(ii) If rA→B and sA are terms of types A → B and A, respectively, then

(rA→BsA)B is a term of type B.

(iii) If rB is a term of type B and xA is an assumption variable of type

A, then (λxA.rB)A→B is a term of type A → B.

(iv) If r∀X.A is a term of type ∀X.A and C is an atomic type, then

(r∀X.AC)A[C/X] is a term of type A[C/X].

(v) If rA is a term of type A and the type variableX is not free in the type

of any free assumption variable of rA, then (ΛX.rA)∀X.A is a term of

type ∀X.A.

4 Fernando Ferreira and Gilda Ferreira

The term-clause which distinguishes Fat from Girard’s system F is

clause (iv) above. In Girard’s system, C can be any type. This differ-

ence explains the impredicativity of system F vis-à-vis the predicativity of

Fat. Since in F we can instantiate the universal types ∀X.A by any type

D (however complex), obtaining A[D/X], Girard’s system has no sensible

notion of subformula. In contrast, there is a natural notion of subformula

in system Fat: the immediate subformulas of ∀X.A are the formulas of the

form A[C/X], where C is an atomic type (free for X in A). By regarding

types as formulas (Curry-Howard isomorphism) we write “A is a subtype

of B” meaning “A is a subformula of B”. More precisely:

Definition 1. The subtypes of a type A are defined by:

(i) A is a subtype of A.

(ii) If B → C is a subtype of A then B and C are both subtypes of A.

(iii) If ∀X.B is a subtype of A then B[C/X] is a subtype of A, for all
atomic type C free for X in B.

In order to denote that the term r is of type A, it is usual to write

rA or r : A (note that our formalism has rigid typing, i.e. every term

carries a fixed type). When the type is clear from the context, or need

not be specified, we simply write r. We presuppose as known the notion

of the set of free (assumption and type) variables of a term r, denoted by

FV(r). We consider all expressions modulo renaming of bound variables.

We also presuppose as known the notion of substitution of a free assumption

variable xA in a term r by a term sA, denoted by r[s/x], and the notion of

substitution of a free type variable X in a term rB by an atomic type C,

denoted by r[C/X] (of type B[C/X]). We always assume that there are

no clashes of variables in the substitutions (if needed, bound variables are

renamed). Details can be found in [5].

In analogy with system F, we have two β-conversions: one for impli-

cation, the arrow β-conversion, and the other for second-order universal

quantification, the universal β-conversion. They are, respectively,

(λx.r)s r[s/x]
(ΛX.r)C r[C/X],

where the left-hand side of a conversion is called its redex and the right-

hand side its contractum. Note that ‘C’ above stands for an atomic type.

We also use in the sequel the so-called η-conversions:

An Elementary Proof of Strong Normalization for Atomic F 5

λx.(rx) r, with x /∈ FV(r)
ΛX.(rX) r, with X /∈ FV(r).

The first one is the arrow η-conversion, the second is the universal
η-conversion. As before, terms on the left-hand side are called redexes
and on the right-hand side are called contracta.

Definition 2. A term r reduces to a term s in one step, and we write, r ≻1

s, if s is obtained from r by replacing a redex by its contractum. We say
that a term r reduces to a term s (and we write r � s) if there is a sequence
of βη-conversions from r to s, i.e., a sequence r ≡ u0, u1, . . . , un ≡ s, such
that for i = 0, 1, . . . , n − 1, ui ≻1 ui+1. A term is normal if it has no
redexes and so we can no longer apply a conversion. A term r is strongly
normalizable if all the reduction sequences starting with r have finite length.

The objective of this paper is to give an elementary proof of the fact

that all terms of Fat are strongly normalizable for βη-conversions. Note,

however, that the statement of strong normalization of a given term of

Fat (we assume an arithmetization of the syntax of Fat) is prima facie
second-order and, therefore, not expressible in the first-order language of

PA. The statement says that there is no infinite reduction sequence start-

ing at the given term (the negated existential part is second-order). For

the expert, it is a strict Π1
1-statement. It is well-known that strict Π1

1-

statements are equivalent to Σ1-statements (this follows from the so-called

König’s lemma). Therefore, the statement that all terms of Fat are strongly

normalizable is equivalent to a Π2-sentence. In fact, and as it is well-known,

it can be put in the following form: for all terms t of Fat there is a finite
reduction tree for t. The reduction tree for a term t is constituted by the

collection of finite reduction sequences starting from t, partially ordered

under the initial part relation (see [12], pages 12-13, for more information).

In the sequel we prove theorems in the usual mathematical style, with-

out caring for their formalizations.

3. On enumerating the terms of Fat

In this section, we present a particular enumeration of the terms of Fat.

This enumeration is based on work of Joachimsky and Matthes to prove

some strong normalization results (and was first presented in [15] as a pos-

itive inductive definition of the strongly normalizable terms of the untyped

6 Fernando Ferreira and Gilda Ferreira

λ-calculus). The set SN is constituted by terms of Fat and its elements

are obtained according to certain rules. We find that the terminology ‘SN’

is not felicitous because it is not obvious from the rules that the terms so

generated are strongly normalizable (this is indeed so, but we only prove

it in the next section). However, this is the standard terminology and we

did not want to change it.

Before describing the rules to obtain the terms in SN, we must establish

some notation. The notation q̄ will be used often in the sequel. It stands

for a sequence q1, . . . , qn whose entries are terms or atomic types. When we

write q̄ ∈ SN we mean that the term entries of the sequence q̄ are in SN.

If t is a further term and the types match, tq̄ is the term (. . . (tq1) . . . qn).
We can now give the rules for obtaining the terms of SN (it is, of course,

understood that types always match and the resulting terms are always

well-formed):

q̄ ∈ SN

xq̄ ∈ SN
(var)

r ∈ SN

λx.r ∈ SN
(λ)

r[s/x]q̄ ∈ SN s ∈ SN

(λx.r)sq̄ ∈ SN
(β→)

r ∈ SN

ΛX.r ∈ SN
(Λ)

r[C/X]q̄ ∈ SN

(ΛX.r)Cq̄ ∈ SN
(β∀)

The letter x above is an assumption variable, X is a type variable, r and s
are terms, and C is an atomic type. The rule (var) is a multiple premise

rule. Note that the sequence q̄ can be the empty sequence. Therefore,

assumption variables are in SN. Here is another example. The sequence

q̄ could stand for the two-entry sequence C, t where C is an atomic type

and t is a term of a certain given type A. If x : ∀X(A → X), then we

can conclude that (xC)t ∈ SN from the single premise t ∈ SN (and the

indication of the sequence C, t). The rules (λ), (Λ) and (β∀) are single

premise rules and, of course, (β→) is a two premise rule.

The following simple combinatorial properties concerning substitution

will be used in the proof of the two lemmas below.

Fact 1. Let r, s and t be terms of Fat, A,C and D types, with C and D
atomic, x and y distinct assumption variables and X and Y distinct type
variables. Suppose also that x /∈ FV(t) and D is not the variable X. Then,
whenever the types match,

An Elementary Proof of Strong Normalization for Atomic F 7

a) (r[s/x])[t/y] is the term (r[t/y])[s[t/y]/x].

b) (r[C/X])[D/Y] is the term (r[D/Y])[C[D/Y]/X].

c) (r[s/xA])[C/X] is the term (r[C/X])[s[C/X]/xA[C/X]].

Lemma 1. Take r ∈ SN, D an atomic type and Y a type variable. Then,
whenever the types match,

1. rD ∈ SN

2. r[D/Y] ∈ SN.

Proof: The proof is by simultaneous induction on the build-up of r ac-

cording to the rules of SN. Without loss of generality, we may suppose

that free and bound variables are distinct in the terms below.

(var) Suppose that the result is valid for the terms in q̄ ∈ SN. We

want to see that it is valid for xAq̄. For (1), note that by (var), xAq̄D ∈

SN (just add one more atomic type to the tuple). For (2), by induction

hypothesis, we have qk[D/Y] ∈ SN for each term qk in q̄. So, by (var),
xA[D/Y](q̄[D/Y]) ∈ SN. (Of course, q̄[D/Y] is the sequence whose entries

are obtained from the entries of q̄ by performing the indicated substitution.)

Note that the term xA[D/Y](q̄[D/Y]) is (xAq̄)[D/Y].

(λ) Let us analyze the case in which λxA.r ∈ SN is generated from

r ∈ SN. The case (1) never occurs due to type restrictions. Concerning

(2), by induction hypothesis, we have that r[D/Y] ∈ SN. Consequently,

by (λ), λxA[D/Y].(r[D/Y]) ∈ SN. This term is (λxA.r)[D/Y].

(β→) By induction hypothesis, r[s/xA]q̄D ∈ SN. By (β→), we get

(1), i.e. (λxA.r)sq̄D ∈ SN. To see (2), we use the induction hypothesis

to conclude that the terms (r[s/xA]q̄)[D/Y] and s[D/Y] are in SN. The

first term is (r[D/Y][s[D/Y]/xA[D/Y]])(q̄[D/Y]). By β→, we conclude that

(λxA[D/Y].r[D/Y])s[D/Y](q̄[D/Y]) ∈ SN, i.e. ((λxA.r)sq̄)[D/Y] ∈ SN.

(Λ) This is the case in which ΛX.r ∈ SN is obtained from r ∈ SN. To

see that (ΛX.r)D ∈ SN it is enough (by (β∀), with empty sequence q̄) that
r[D/X] ∈ SN. But this is our induction hypothesis with type variable

X. For (2), by induction hypothesis, r[D/Y] ∈ SN and so, by (Λ), we

conclude that ΛX.(r[D/Y]) ∈ SN. Note that this term is (ΛX.r)[D/Y].

(β∀) Suppose that (1) and (2) are valid for r[C/X]q̄ ∈ SN.

We want to prove that they are also valid for (ΛX.r)Cq̄ ∈ SN.

By induction hypothesis, r[C/X]q̄D ∈ SN. Hence, by (β∀),

(ΛX.r)Cq̄D ∈ SN. For (2), by induction hypothesis, (r[C/X]q̄)[D/Y] ∈

8 Fernando Ferreira and Gilda Ferreira

SN. I.e., r[D/Y][C[D/Y]/X](q̄[D/Y]) ∈ SN. By (β∀), we get

(ΛX.r[D/Y])C[D/Y](q̄[D/Y]) ∈ SN. Note that this term is, precisely,

((ΛX.r)Cq̄)[D/Y].

Lemma 2. Take r ∈ SN, tρ ∈ SN and y an assumption variable. Then,
whenever the types match,

1. rt ∈ SN

2. r[t/y] ∈ SN.

Proof: The proof is by simultaneous induction, with a main induction on

the type ρ and side induction on the build-up of r according to the rules

of SN. Without loss of generality, we may suppose that free and bound

variables are distinct in the terms below.

(var) Suppose that the result is valid for the terms in q̄ ∈ SN. We

want to see that it is valid for xq̄. Case (1) is very easy, similar to the

corresponding one in the previous lemma. The second case is more subtle.

By induction hypothesis, qk[t/y] ∈ SN for each qk a term in the sequence q̄.
Applying (var), we conclude that x(q̄[t/y]) ∈ SN. If x and y are different

variables, note that x(q̄[t/y]) is the term (xq̄)[t/y]. Otherwise, we need to

prove that t(q̄[t/y]) ∈ SN. But this follows by multiple applications of (1)

of Lemma 1 and of the main induction hypothesis. Do observe that the

terms qk[t/y] have a type which is a subtype of ρ (types are supposed to

match in term applications).

(λ) This is the case in which λx.r is generated from r ∈ SN. For (1),

we want to prove that (λx.r)t ∈ SN. By (β→) (with empty sequence q̄), it
suffices to prove that r[t/x] ∈ SN. But this is exactly the side induction

hypothesis. For (2), notice that the side induction hypothesis yields r[t/y] ∈
SN and so, by (λ), λx.(r[t/y]) ∈ SN. This term is (λx.r)[t/y], as wanted.

(β→) Let us consider the case in which (λx.r)sq̄ is obtained from

r[s/x]q̄ ∈ SN and s ∈ SN. For (1), note that by the side induction hy-

pothesis we have r[s/x]q̄t ∈ SN and so, by (β→), we get (λx.r)sq̄t ∈ SN.

For (2), by side induction hypothesis, we have (r[s/x]q̄)[t/y] ∈ SN, i.e.,

r[t/y][s[t/y]/x](q̄[t/y]) ∈ SN. Since we also have s[t/y] ∈ SN by side in-

duction hypothesis, we can conclude that (λx.r[t/y])s[t/y](q̄[t/y]) ∈ SN

by an application of (β→). Note that this latter term is ((λx.r)sq̄)[t/y], as
wanted.

An Elementary Proof of Strong Normalization for Atomic F 9

(Λ) When ΛX.r ∈ SN is obtained from r ∈ SN, the term (ΛX.r)t
can never be formed because of incompatibility of types. For (2), we want

to prove that (ΛX.r)[t/y] ∈ SN. This latter term is ΛX.r[t/y]. The de-

sired conclusion now follows immediately from the side induction hypoth-

esis r[t/y] ∈ SN via an application of (Λ).

(β∀) The last case is when (ΛX.r)Cq̄ is obtained from r[C/X]q̄ ∈

SN. By side induction hypothesis, we have r[C/X]q̄t ∈ SN. Applying

(β∀), we obtain (1), i.e. (ΛX.r)Cq̄t ∈ SN. For (2), consider the side

induction hypothesis (r[C/X]q̄)[t/y] ∈ SN. We claim that this term is

r[t/y][C/X](q̄[t/y]). This is clear if y does not occur free in r. If y occurs

free in r, use (c) of Fact 1 (note that by the rule of formation of second-order

abstraction the variable X cannot occur free in the type of y). In short,

r[t/y][C/X](q̄[t/y]) ∈ SN. By rule (β∀), we get (ΛX.r[t/y])C(q̄[t/y]) ∈

SN. The latter term is ((ΛX.r)Cq̄)[t/y], as wanted.

Theorem 1. All the terms of Fat are in SN.

Proof: This is a consequence of the fact that assumption variables are in

SN, of the rules (λ) and (Λ), and of the two previous lemmas.

4. Terms have finite reduction trees

Let us denote by t ∈ FR the statement that the term t has a finite reduction
tree. Given a finite tree, we can associate to each node of the tree its height

(relative to the tree). The height of a leaf is just zero. The height of an

inner node is just the maximum height of its (finitely many) sons plus one.

Of course, in a reduction tree, to each node it is associated a term. In the

sequel, when we speak of terms in a reduction tree we mean any node in

the tree with that term associated.

Most of the following results are well-known:

Lemma 3. Let r be a term of Fat. Suppose that for all terms s such that
r ≻1 s, we have s ∈ FR. Then r ∈ FR.

Lemma 4. In the following, we presuppose matching types (when appropri-
ate):

1. If r ≻1 s, then q[r/x] � q[s/x]. Hence, if r � s, then q[r/x] � q[s/x].

10 Fernando Ferreira and Gilda Ferreira

2. If q ≻1 r, then q[s/x] ≻1 r[s/x]. Hence, if q � r, then q[s/x] �
r[s/x].

3. If q ≻1 r, then q[C/X] ≻1 r[C/X]. Hence, if q � r, then q[C/X] �

r[C/X].

Proposition 1. Let r, s and q be terms of Fat, C an atomic type, x an
assumption variable and X a type variable. Then, as long as types match
appropriately,

1. If rq ∈ FR then r ∈ FR and q ∈ FR.

2. If rC ∈ FR then r ∈ FR.

3. If r[s/x] ∈ FR then r ∈ FR.

4. If r[C/X] ∈ FR then r ∈ FR.

Given the results of the previous section, in order to show that the

calculus Fat enjoys the property of strong normalization, it is enough to

prove the following:

Theorem 2. If t ∈ SN, then t ∈ FR.

Proof: The proof is by induction on the build-up of t according to the

rules of SN. There are five cases to consider.

For (var), assume that q̄ ∈ FR in the sense that every term in the

tuple (if any) has a finite reduction tree. We want to prove that xq̄ ∈ FR.

That is immediate since each reduction on xq̄ has to take place in the terms

in q̄ and these are in finite number and have finite reduction trees.

For (λ), let us fix r0 ∈ FR. We want to show that λx.r0 ∈ FR. We

prove that λx.r ∈ FR for all terms r in the reduction tree of r0 by induction

on the height of r. Let us consider the one-step reductions of λx.r. It can
be a reduction to λx.r′, where r ≻1 r′. In this case, λx.r′ ∈ FR by

induction hypothesis. The remaining possibility is when r is of the form vx
and the term λx.r η-converts to v. Since vx ∈ FR, by Proposition 1 (1),

we conclude that v ∈ FR. Note that the proof is supported by Lemma 3.

For (β→), we assume that r[s/x]q̄ ∈ FR and s ∈ FR in order to show

that (λx.r)sq̄ ∈ FR. The proof is by induction on the sum of the heights

of r, s and q̄. (Note that by hypothesis and by Proposition 1, the terms r,
s and the terms in q̄ have finite reduction trees.) The possible reductions

in one step from (λx.r)sq̄ are: i) (λx.r′)sq̄ with r ≻1 r′; ii) (λx.r)s′q̄ with

An Elementary Proof of Strong Normalization for Atomic F 11

s ≻1 s′; iii) (λx.r)sq̄′ with a term qi in q̄ reducing in one step to a term q′i;
iv) r[s/x]q̄; v) usq̄ when r :≡ ux. By induction hypothesis, the terms in the

first three cases are in FR. Note that in all the three cases the induction

hypothesis applies (Lemma 4 and/or the closure of FR under reduction

ensure that: r′[s/x]q̄ ∈ FR, r[s′/x]q̄ ∈ FR, s′ ∈ FR and r[s/x]q̄′ ∈ FR).

The fourth case follows by hypothesis (r[s/x]q̄ ∈ FR) and the last case

reduces to the previous one. Thus, by Lemma 3, (λx.r)sq̄ ∈ FR.

The case (Λ) is like the case (λ) above.
Finally, the case (β∀) is very similar to (β→). Let us assume that

r[C/X]q̄ ∈ FR having in view to prove that (ΛX.r)Cq̄ ∈ FR. The proof

is by induction on the sum of the heights of r and q̄, possible because,

by Proposition 1, r and the terms in q̄ have finite reduction trees. The

possible reductions in one step from (ΛX.r)Cq̄ are: i) (ΛX.r′)Cq̄ with

r ≻1 r′; ii) (ΛX.r)Cq̄′ with a term qi in q̄ reducing in one step to a term

q′i; iii) r[C/X]q̄; iv) uCq̄ when r :≡ uX. The first two cases follow by

induction hypothesis, the third case follows by hypothesis and the fourth

case reduces to the third.

As a consequence of Theorems 1 and 2, we have the following result:

Main Theorem. All the terms of Fat are strongly normalizable with respect
to βη-conversions.

5. Final comments

It is clear that the above proofs are formalizable in PA since all the induc-

tions used are clearly first-order expressible (modulo an arithmetization of

the syntax). Thus, our proof of the strong normalization for Fat is elemen-

tary. Can we claim that it is finitistic, i.e., is it formalizable in primitive

recursive arithmetic?

Primitive recursive (or Skolem) arithmetic PRA is the quantifier-free

system of arithmetic usually associated with finitism (the philosophically

inclined reader can consult [11] for a defense of the position that finitis-

tic reasoning is essentially the reasoning formalizable in PRA). The main

features of PRA are the inclusion of a function symbol for each description

of a primitive recursive function and, also, an appropriate rule of induc-

tion (see section 2.1 of [13] for a modern exposition of this system). The

reader can readily object in two ways to the claim that we have provided

12 Fernando Ferreira and Gilda Ferreira

a finitistic proof of strong normalization. On the one hand, our arguments

use first-order reasoning (and not quantifier-free inferences): even the very

statement of strong normalization is – as it stands – not quantifier-free (it

is given by a Π2-sentence). On the other hand, many inductions involve

prima facie Σ1-predicates like ‘t ∈ SN’ or ‘t ∈ FR’ (hence, the inductions

are not primitive recursive in character). These are two quite different

objections, but they can be both answered by the following single result:

Theorem 3 (Parsons, Takeuti, Mints). If the theory IΣ1 proves a Π2-
sentence ∀x∃yA(x, y), where A is quantifier-free, then there is a (descrip-
tion for a) primitive recursive function f such that the theory PRA proves
A(x, f(x)).

The theory IΣ1 is the first-order subsystem of Peano arithmetic with

induction restricted to Σ1-formulas of arithmetic. It is well-known that IΣ1

is able to introduce (in an appropriate sense) all the primitive recursive

functions (this is essentially a result of Gödel in his famous incompleteness

paper). Hence, we can see PRA as a subtheory of IΣ1 (in the theorem

above, we assume that the quantifier-free formula A(x, y) is a formula of the

language of PRA). Theorem 3 was proved, independently, by the referred

authors in the early seventies (see [3] for references and a simple model-

theoretic proof). In a nutshell, in order to see that a proof of a Π2-statement

is finitistic it is enough to be able to formalize it in the first-order theory

IΣ1.

Are the proofs we present in this paper formalizable in IΣ1? An atten-

tive checking of the proofs (which explains our care in making many steps

and lemmas explicit) shows that all arguments can be formalized in IΣ1

except for a single one. It is the inductive argument of Lemma 2. Disre-

garding issues of type matching (to make reading easier), the following is

proved:

∀ρ (∀r ∈ SN ∀tρ ∈ SN (rt ∈ SN ∧ r[t/y] ∈ SN)).

We are being careless about the variable ‘y’. We may just consider that we

are quantifying over all free assumption variables of r (this is a bounded

quantification and poses no problems for a finitistic proof). The above

universal statement is proved by induction on the build-up of the type ρ
(it is the main induction in the proof given in Section 3). However, the

matrix ∀r ∈ SN∀tρ ∈ SN (rt ∈ SN ∧ r[t/y] ∈ SN) is prime facie Π2 and,

therefore, the required induction is unavailable in IΣ1. Even though the

An Elementary Proof of Strong Normalization for Atomic F 13

induction hypothesis (main induction hypothesis) is only used once – as it

happens, in the seemingly innocent (var) case – it is used crucially there.

Note that the problem is not intrinsic of atomic polymorphism, it is already

present for the implicational fragment of the typed λ-calculus.
We do not see a way around this problem. It seems that the strategy

in [8] for producing short proofs of normalization gives rise to elementary

proofs only, not finitistic proofs. A way to transform elementary proofs

like the ones we present in this paper, into finitistic ones is via an esti-

mation of bounds. If we manage to bound primitive recursively the sizes

of the SN-derivations and of the reduction trees, the predicates ‘t ∈ SN’

and ‘t ∈ FR’ become primitive recursive predicates. A natural attempt

towards this goal is to try to adapt Helmut Schwichtenberg’s strategy in

[9] (for the implicational fragment of the typed λ-calculus) to the atomic

polymorphic context (see also the refinement of Arnold Beckmann in [2]).

We plan to pursue the delicate work of the estimation of upper bounds in

future investigations. There are in the literature other approaches for the

obtention of upper-bounds of the normalization procedure, as witnessed

by the work of Jaco van de Pol [14]. However, this latter approach has

some drawbacks since it analyses a proof of normalization based on Tait’s

computable predicate.

As pointed by an anonymous referee, other restrictions of system F

with (limited) second-order quantification admit proofs of normalization

with restricted means. We refer here the example of the referee, namely the

work of Thorsten Altenkirch and Thierry Coquand [1] where the restriction

occurs not in the instantiation of the universal quantifications but on the

universal types allowed: no nesting of universal quantifiers is permited.

Acknowledgements

Both authors acknowledge the support of Fundação para a Ciência e a Tec-

nologia [UID/MAT/04561/2013] and Centro de Matemática, Aplicações

Fundamentais e Investigação Operacional of Universidade de Lisboa. The

second author is also grateful to Fundação para a Ciência e a Tecnolo-

gia [UID/CEC/00408/2013 and grant SFRH/BPD/93278/2013], to Large-

Scale Informatics Systems Laboratory (Universidade de Lisboa) and to

Núcleo de Investigação em Matemática (Universidade Lusófona).

14 Fernando Ferreira and Gilda Ferreira

References

[1] T. Altenkirch and T. Coquand, A finitary subsystem of the polymorphic

λ-calculus, Proceedings of the 5th International Conference on Typed Lambda

Calculi and Applications (TLCA 2001), Lecture Notes in Computer

Science 2044 (2001), pp. 22–28.

[2] A. Beckmann, Exact bounds for lenghts of reductions in typed λ-calculus,

The Journal of Symbolic Logic 66(3) (2001), pp. 1277–1285.

[3] F. Ferreira, A simple proof of Parsons’ theorem, Notre Dame Journal of

Formal Logic 46 (2005), pp. 83–91.

[4] F. Ferreira, Comments on predicative logic, Journal of Philosophical

Logic 35 (2006), pp. 1–8.

[5] F. Ferreira and G. Ferreira, Atomic polymorphism, The Journal of Sym-

bolic Logic 78 (2013), pp. 260–274.

[6] F. Ferreira and G. Ferreira, The faithfulness of Fat: a proof-theoretic proof,

Studia Logica 103(6) (2015), pp. 1303–1311.

[7] J.-Y. Girard, Y. Lafont and P. Taylor, Proofs and Types, Cambridge

University Press (1989).

[8] F. Joachimski and R. Matthes, Short proofs of normalization for the simply-

typed lambda-calculus, permutative conversions and Gödel’s T, Archive for

Mathematical Logic 42 (2003), pp. 59–87.

[9] H. Schwichtenberg, An upper bound for reduction sequences in the typed

λ-calculus, Archive for Mathematical Logic 30 (1991), pp. 405–408.

[10] W. Tait, Intentional interpretations of functionals of finite type I,The Jour-

nal of Symbolic Logic 32 (1967), pp. 198–212.

[11] W. Tait, Finitism, Journal of Philosophy 78 (1981), pp. 524–546.

[12] A. S. Troelstra and H. Schwichtenberg, Basic Proof Theory, Cambridge

University Press (1996).

[13] A. S. Troelstra and D. van Dalen, Constructivism in Mathematics. An

Introduction, volume 1, North Holland, Amsterdam (1988).

[14] J. van de Pol, Two different strong normalization proofs? Computability

versus functionals of finite type, Proceedings of the Second International

Workshop on Higher-Order Algebra, Logic and Term Rewriting (HOA’95),

Lecture Notes in Computer Science 1074 (1996), pp. 201–220.

[15] F. van Raamsdonk and P. Severi, On normalization, Technical report CS-

R9545, Centrum voor Wiskunde en Informatica, Amsterdam (1995).

An Elementary Proof of Strong Normalization for Atomic F 15

Departamento de Matemática

Faculdade de Ciências, Universidade de Lisboa

Campo Grande, Ed. C6, 1749-016 Lisboa, Portugal

e-mail: fjferreira@fc.ul.pt

Departamento de Matemática

Faculdade de Ciências, Universidade de Lisboa

Campo Grande, Ed. C6, 1749-016 Lisboa, Portugal

and

Departamento de Matemática

Universidade Lusófona de Humanidades e Tecnologias

Av. do Campo Grande, 376, 1749-024

Lisboa, Portugal

e-mail: gmferreira@fc.ul.pt

