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Szymon Chlebowski

MEANING IS USE:
THE CASE OF PROPOSITIONAL IDENTITY

Abstract

We study natural deduction systems for a fragment of intuitionistic logic with

propositional identity from the point of view of proof-theoretic semantics. We

argue that the identity connective is a natural operator to be treated under the

elimination rules as basic approach.
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1. Introduction

The main idea behind proof-theoretic semantics is to view the meaning of a
logical connective as given by the conditions under which a corresponding
proposition can be asserted1. This approach is related to the Wittgenstein’s
slogan that meaning is use, contrary to the traditional view that meaning is
given by the truth conditions. From the point of view of natural deduction,
there are two kinds of rules: introduction rules and elimination rules. Let
us start with the famous observation by Gentzen:

1A thorough exposition of this approach is presented in the work of [12], [4] and [14]
among many others.
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”The introductions represent, as it were, the ’definitions’ of the
symbol concerned, and the eliminations are no more, in the final
analysis, than the consequences of those definitions.” [8, p. 80]

Introduction rules specify the conditions under which a proposition of a
certain form can be asserted, while elimination rules state the require-
ments pertaining to what can be deduced from a given proposition. Most
intuitionistic connectives, such as implication, have both introduction and
elimination rules. The Falsum constant is an exception here—it has only
an elimination rule. The reason is that Falsum cannot be asserted under
any conditions, but hypothetically we need to know what can be deduced
from it (in our case, every proposition). Thus, the meaning of the Falsum
constant is established only by the elimination rule. In this paper we will
try to show that a propositional identity connective can be treated in a
similar manner.

In the next section, fundamental notions will be introduced, concerning
both the logic used throughout the paper and proof-theoretic semantics
in general. Then we shall turn to the definition of validity based on in-
troductory rules. In the following subsection, a number of examples will
be examined. The third section concerns validity with elimination rules
as basic, and it is structured analogically to the previous one: firstly we
define such validity then we provide examples. The final section is a brief
conclusion.

2. Intuitionistic Logic with Identity

In intuitionistic terms, we are not interested in propositions being true or
false but in constructions which prove them. Equivalence of two formulae,
A and B, means that every proof of A can be transformed into a proof
of B and vice versa. Thus, whenever A is provable B is provable as well.
However, it is interesting to consider a stronger notion which says that the
classes of constructions proving A and B are exactly the same. This is
the intended interpretation of the propositional identity connective on the
grounds of intuitionistic logic.
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2.1. BHK

What follows is a version of the BHK-interpretation of Falsum (⊥), intu-
itionistic implication (⊃) and propositional identity (≡).

there is no proof of ⊥
a is a proof of A ⊃ B a is a construction that converts

each proof a1 of A into a proof a2(a1) of B
a is a proof of A ≡ B a is the identity function

Here a formula A may be thought of as representation of the set of its
own proofs.

The additional condition for identity can be interpreted in the following
ways:

• a proof of A ≡ B is the identity function transforming a given proof
of A into a proof of B;

• a proof of A ≡ B establishes the fact that two sets of proofs are equal.

Both interpretations use the notion of identity function, but differently
typed—one of them transforms proofs, the other one sets of proofs. We do
not claim that every proof of A can be transformed into a proof of B by
the identity function, since we want formula A ≡ A to be valid under our
interpretation of ≡ (naturally there may be non-normal proofs of A which
are not identical to a normal one).

Naturally, identity is stronger than implication: if we have an arbitrary
proof of A ≡ B it will also count as a proof of A ⊃ B and B ⊃ A (due to
symmetry of ≡).

2.2. Hilbert-style formalization

The logic we are going to consider can be thought of as an intuitionistic
variant of basic non-fregean logic (SCI—Sentential Calculus with Identity)
introduced by [1]. We call it ISCI—Intuitionistic Sentential Calculus with
Identity.

The language LISCI of the logic ISCI is defined by the following grammar:

A ::= V | ⊥ | A&A | A ∨A | A ⊃ A | A ≡ A

where V is a denumerable set of propositional variables. The axiom system
for ISCI can be obtained from any such system for INT by the addition of
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≡-specific axioms (see Table 1). The first axiom underlines that identity
is reflexive; the second axiom shows identity as a stronger connective than
implication; and the third axiom expresses the fact that ≡ is a congruence
relation. The axioms are valid under the proposed interpretation of the
identity connective, as it has been shown in [3]. The only rule of inference
is modus ponens.

Table 1. Axioms for propositional identity; ⊗ ∈ {&,∨,⊃,≡}

1. A ≡ A

2. (A ≡ B) ⊃ (A ⊃ B)

3. (A ≡ B) ⊃ ((C ≡ D) ⊃ ((A⊗ C) ≡ (B ⊗D)))

2.3. Natural deduction—synthetic approach

Following the prevailing meaning is use paradigm, throughout the paper
we use the framework of natural deduction.

The first natural deduction system for ISCI we consider closely follows
the corresponding axiom system. We use standard natural deduction rules
for intuitionistic logic adding three specific rules from Table 2. The notation
[A ≡ An]j indicates that the assumption A ≡ A is discharged, n indicates
the number of instances of a formula that are closed and j is the discharge
label. This system was shown to be complete with respect to Hilbert-style
system and enjoys normalisation [2].

According to the well-known Gentzen’s idea the meaning of each con-
nective is fixed by its introduction rule(s) and corresponding elimination
rules are somehow justified by means of introduction rules. Here all rules
are general elimination rules [11]2. They are formulated in a general form:
conclusions do not have specified logical form. Thus, there are possible
applications of elimination rules for a given connective which introduce a
formula with the same connective as a main sign.

2Althought rule ≡1 would be considered general introduction rule in [10], we prefer
to consider it as a general elimination rule, since the formula introduced in the conclusion
does not have specified logical form. But certainly there are introductory applications
of this rule, that is, application which introduces identity.
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Table 2. Identity specific rules in the system NDISCI (0 ≤ n)

[A ≡ An]j
....
C
C

≡1, j
A ≡ B

[A ⊃ Bn]j
...
.
C

C
≡2, j

A ≡ C B ≡ D

[(A⊗B) ≡ (C ⊗D)n]j
....
F

F
≡3, j

However, these rules reflect an important feature of propositional iden-
tity: it is intensional and it cannot be established solely on the fact that
both of its components are provable. Thus, we cannot synthesise proposi-
tional identity and we do not know how to introduce it with one exception—
one can safely assume reflexive identity, since assumption of this form can
always be closed. On the other hand there is a specific rule for synthesiz-
ing more complex identities from simpler ones (due to the importance of
this rule we call it synthetic approach to identity). However, it does not
entail that this connective has no meaning: these rules give us hints on
how to proceed when we have already established that some identity holds.
Thus, we know how to use it and, according to Wittgenstein’s slogan, it
has meaning.

2.4. Natural deduction—analytic approach

The system NDISCI introduced in the previous section is closely related to
the axiomatic formulation of ISCI. Natural deduction rules in this system
correspond to axioms. Yet, since we know that the symbol ≡ is semanti-
cally interpreted as equality (in the classical version, the SCI system) or
as identity function in ISCI, we can treat identity in a similar manner as
equality is treated in First-Order Logic (FOL). The rules are presented in
Table 3.
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Table 3. Identity specific rules in the system ND∗
ISCI (0 ≤ n)

[A]u

A ≡ A
≡ I, u

A ≡ B ϕ(A)

[ϕ(B/A)n]j
....
F

F
≡ E, j

On the left-hand side we have the introduction rule for identity: having
established A we can conclude that A ≡ A at the same time discharging
the open assumption A3. According to the elimination rule, if we have es-
tablished that A ≡ B and we have a formula ϕ with at least one occurrence
of the formula A (we indicate that there exists such occurrence by ϕ(A)),
we can conclude formula ϕ(B/A), that is the formula ϕ with at least one
occurrence of A replaced by B. Due to the central character of the elimina-
tion rule, which enables replacing identical subformulas in a given formula,
we call this approach to identity analytic.

Contrary to the synthetic approach to ISCI, the present set of rules is
compatible with Gentzen’s analysis of logical connectives: each connective
has both introduction and elimination rule. Thus, a new detour is possible:
the elimination rule for the identity connective has been applied just after
the introduction rule for that connective:

[A]

A ≡ A
≡ I

....
ϕ(A)

ϕ(A/A)
≡ E

3We choose this form of the introduction rule for ≡ to exhibit the similarity between
BHK-interpretations of implication and identity: both the former and the latter denote
a function, but in case of identity it is a very specific one. Other possibility, since the
assumption is immediately discharged, is to consider a no-premiss rule:

A ≡ A
≡ I



Meaning is Use: The Case of Propositional Identity 281

This derivation can easily be transformed in such a way that an occurrence
of A ≡ A disappears from the derivation:

....
ϕ(A)

The system is complete and enjoys normalisation, see [2].

3. Validity based on introduction rules

Let us now recall some basic concepts of proof-theoretic semantics to serve
as a rudiment of our further inquiry. First and foremost, it is convenient to
think of proof-theoretic semantics in contrast to standard model-theoretic
semantics. In standard semantics we start with some names and sentences
which are represented by terms and formulae. Then we assign meaning
to these objects and we specify truth conditions. Having done that we
are finally able to define the notions of validity and entailment. In proof-
theoretic semantics the starting point is the notion of an argument which
can be represented as a formal object, most often as a derivation in a nat-
ural deduction system. The next step is to define the notion of validity of
derivations and arguments which they represent. So, contrary to model-
theoretic semantics, we build up semantic notions from an inferential point
of view. Note that the validity of concrete natural deduction rules is es-
tablished in terms of validity of derivations:

(. . .) rules or consequences are regarded as steps which preserve
the validity of arguments (. . .) [14, p. 529]

We shall start with some terminological remarks. By derivation struc-
ture (proof skeleton in Prawitz terms) we mean a logical representation of
a certain type of arguments. It can be depicted as a natural deduction
derivation, with a conclusion as root and formulae called assumptions as
leaves, built from arbitrary rules of the form:

[Γ1]
i

....
A1 . . .

[Γn]
i

....
An

B
R, i
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Note that derivation structures may not be properly built derivations
in one of the natural deduction systems we have just defined. If all assump-
tions within a given derivation structure are discharged then it is closed
[14, p. 530]. Otherwise, a derivation structure is open. A canonical deriva-
tion structure ends with an application of an introduction rule [6, p. 36].

The notion of validity is relativised to an atomic system S and a re-
duction system J . By the atomic system S we understand a logic-free
system with production rules for atomic formulae [14, p. 542], which cor-
respond to production systems of grammars [16]. In our case the atomic
formulae are propositional variables and identities. By the reduction system
we mean a system of meta-rules enabling transformation of one derivation
structure into another. Look at normalisation of derivations as an example
of a reduction system. The detour convertibility serves to exclude, in the
given derivation, consecutive pairs of introduction and elimination rules ap-
plications for the same connective. The permutation convertibility allows
a rearrangement of assumptions if an instance of an elimination rule has a
major premiss that is a conclusion of another elimination rule application.
Examples of both normalisations are shown in Examples 2 and 3.

B ≡ A
A ≡ B

sym ⇝

....
B ≡ A

[B]1

B ≡ B
≡I.1

[A ≡ B]2

A ≡ B
≡E.2

Example 1. Rule sym cannot be justified using I-validity

There are two main approaches to the definition of validity of derivations
(and some combinations of them; for an in-depth classification see [7]). One
of them, which we will address first, closely follows Gentzen and assumes
that introduction rules are meaning-giving and elimination rules need to be
somehow justified based on introduction rules. Another approach, which
we believe is more appropriate for our treatment of propositional identity, is
based on the primacy of elimination rules. According to Schroeder-Heister
the distinction between these two paradigms reflects the duality between
verificationism and falsificationism [15].
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[Am]
....
B

A ⊃ B
⊃I

....
A

[Bn]
....
C

C
⊃E

⇝

....
A mx

...

....
A

....
B nx

...

....
A mx

...

....
A

....
B

....
C

Example 2. Detour convertibility example

The definition of the validity of a derivation is given below. Further,
we are going to introduce yet another notion of validity and thenceforth,
we are going to refer to this type of validity as I-validity.

1. Every closed proof in the underlying atomic system is
valid.

2. A closed canonical proof is considered valid, if its immedi-
ate subproofs are valid.

3. A closed non-canonical proof is considered valid, if it re-
duces to a valid closed canonical proof or to a closed proof
in the atomic system.

4. An open proof is considered valid, if every closed proof
obtained by replacing its open assumptions with closed
proofs and its open variables with closed terms is valid [16].

The exact definition of validity based on introduction rules is formulated
below. The S in the following definition refers to an arbitrary atomic
system, J is a justification, that is a reduction system. Validity depends
on the underlying atomic system S and on the type of reduction procedures
used as well. S′ is an extension of the system S if S′ is S or S′ results from
adding further production rules to S.
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....
A&B

[Am, Bn]
....

C&D
C&D

&E

[Ck, Dl]
....
E

E
&E

⇝
....

A&B

[Am, Bn]
....

C&D

[Ck, Dl]
....
E

E
&E

E
&E

Example 3. Permutation convertibility example

Definition 3.1 (I-validity).

1. Every closed derivation structure in S is S-valid with respect to J
(for every J ).

2. A closed canonical derivation structure is S-valid with respect to J ,

if its immediate substructure
A....
B

is S-valid with respect to J .

3. A closed non-canonical derivation structure is S-valid with respect to
J , if it reduces, with respect to J , to a canonical derivation structure,
which is S-valid, with respect to J .

4. An open derivation structure

A1, . . . , An....
B

where all open assumptions are among A1, . . . , An is S-valid with
respect to J , if for every extension S′ of S and every extension J ′ of

J , and for every list of i closed derivation structures
....
Ai

(1 ≤ i ≤ n),

which are S’-valid with respect to J ′,

....
A1, . . . ,

....
An....

B

is S’-valid with respect to J ′ [15, pp. 162-163].
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A ≡ B
(A ⊃ B)&(B ⊃ A)

R1 ⇝

A ≡ B [A]2 [B]1

B
≡E.1

A ⊃ B
⊃I.2

....
A ≡ B

[A]3

A ≡ A
≡I.3

[B ≡ A]4

B ≡ A
≡E.4

[B]6 [A]5

A
≡E.5

B ⊃ A
⊃I.6

(A ⊃ B)&(B ⊃ A)
&I

Example 4. Justification of R1 using I-validity

Validity is first and foremost a feature of a derivation structure, but
when we say that a natural deduction rule is valid, what we mean is that
the corresponding one-step derivation structure is valid.

Examples of I-valid derivations In this section, we are going to ex-
amine validity as defined in the definition 3.1. Each example starts with a
rule which is reduced to a valid derivation structure in the arbitrary under-
lying atomic system S. Every exemplary rule that we are going to address
in this paper is an instance of an open derivation structure with exactly
one open assumption. According to point (4) of definition 3.1 we are going
to treat those open assumptions as follows: we extend S in such a way
that the assumption in question can be derived from (at least one) valid
derivation, and we proceed examining the given example as an instance of
closed derivation structure.

We are going to focus on examples based on the analytic approach to
ISCI that includes an introduction rule for the ≡ connective. The example 1
shows a reduction with no open assumptions (excluding the initial one),
yet impossible to be reduced to a canonical form—i.e. to introduce the ≡
connective in the last step of the derivation. Thus, this derivation does not
meet the point (iii) of definition 3.1 and therefore is not I-valid.

However, in the case of the derivation structure that includes the ≡
connective but not as the main connective in the conclusion, as rule R1

(see Ex. 4, p. 285), it is possible to reduce the derivation to the canonical
form. Therefore, rule R1 is I-valid, even though it contains sym derivation
structure.
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As we have seen the I-validity fails to recognise valid derivations that
include the ≡ connective as a primary connective in the conclusion. Thus,
an approach based on introduction rules is unsatisfactory in the case of ISCI.
Therefore, we are going to turn to the elimination rules based alternative
in the next section.

4. Validity based on elimination rules

There exists a notion of e-canonicity of derivations [5, 7] that is closely
related to the I-validity (3.1), which is unsatisfactory in our case for the
same reasons that we have described in the previous section. In what
follows, we are going to define e-validity in a different manner.

In the introductory section, we quoted Gentzen (p. 1), who perceived
elimination rules as consequences of definitions given by the introduction
rules for the given connective. Therefore, validity with elimination rules
as basic views a derivation as valid if all immediate logical consequences,
that can be derived from that derivation, are valid as well. As I-validity
examines whether all the steps taken in the derivation to this point are
legitimate, acting retrospectively in a sense, the E-validity is prospective,
investigating the legitimacy of the steps that can be taken from the con-
clusion of the derivation: if all applications of elimination rules to the end
formula of some derivation structure D result in E-valid derivation struc-
tures, then the initial derivation structure D is considered to be E-valid.

Validity based on elimination rules (E-validity) is defined as follows
(adapted from [15, pp. 164–166]) for the synthetic approach to ISCI:

Definition 4.1 (E-validity).

1. Every closed derivation in S is E-valid with respect to J , (for every
J ).

2. (&) A closed derivation structure
....

A&B
is E-valid in S with respect

to J , if the closed derivation structure

....
A&B

[A,B]1
....
C

C
&E.1
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is E-valid in S with respect to J , or reduces to derivation struc-
tures which are E-valid in S with respect to J .

(⊃) A closed derivation structure
....

A ⊃ B
is E-valid in S with respect

to J , if for every extension S′ of S and every extension J ′ of J

and for every closed derivation structure
....
A

which is E-valid in

S with respect to J ′, the (closed) derivation structure

....
A ⊃ B

....
A

[A]1
....
C

C
⊃E.1

is E-valid in S′ with respect to J ′, or reduces to derivation
structures which are E-valid in S′ with respect tp J ′.

(∨) A closed derivation structure
....

A ∨B
is E-valid in S with respect

to J , if for every extension S′ of S and every extension J ′ of

J , and for all derivation structures
A....
C

and
B....
C

with atomic C,

which are E-valid in S′ with respect to J ′ and which depend
on no assumptions beyond A and B, respectively, the (closed)
derivation structure

A ∨B

[A]1
....
C

[B]1
....
C

C
∨E.1

is E-valid in S′ with respect to J ′, or reduces to derivation
structure, which is E-valid in S′ with respect tp J ′.
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(≡) i. A closed derivation structure
....

A ≡ B
is E-valid in S with

respect to J , if for every extension S′ of S and every ex-
tension J ′ of J , and for every closed derivation structure
A ⊃ B....

C with atomic C, which is E-valid in S′ with respect to
J ′ and which depends on no assumptions beyond A ⊃ B,
the (closed) derivation structure

....
A ≡ B

[A ⊃ B]1
....
C

C
≡2 .1

is E-valid in S′ with respect to J ′, or reduces to derivation
structure, which is E-valid in S′ with respect to J ′.

ii. A closed derivation structure

....
A ≡ C

....
B ≡ D is E-valid in S

with respect to J , if for every extension S′ of S and every
extension J ′ of J , and for every closed derivation structure
(A⊗B) ≡ (C ⊗D)

....
F with atomic F , which is E-valid in S′

with respect to J ′ and which depends on no assumptions
beyond (A⊗B) ≡ (C⊗D), the (closed) derivation structure

....
A ≡ C

....
B ≡ D

[(A⊗B) ≡ (C ⊗D)]1
....
F

F
≡3 .1

is E-valid in S′ with respect to J ′, or reduces to derivation
structure, which is E-valid in S′ with respect to J ′.

3. A closed derivation structure
....
A

of an atomic formula A, which is not

a derivation in S, is E-valid in S with respect to J , if it reduces with
respect to J to a derivation in S.
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4. An open derivation structure

A1, . . . , An....
B

where all open assumptions are among A1, . . . , An is E-valid in S with
respect to J , if for every extension S′ of S and every extension J ′ of

J , and for every list of i closed derivation structures
....
Ai

(1 ≤ i ≤ n),

which are valid in S′ with respect to J ′,

....
A1, . . . ,

....
An....

B

is valid in S′ with respect to J ′.

The definition based on the analytic approach to ISCI is the same as
def. 4.1 with different rule for ≡:

Definition 4.2. (≡∗) A closed derivation structure
....

A ≡ B
is E-valid in S

with respect to J , if for every extension S′ of S and every extension J ′

of J , and for all closed derivation structures

....
ϕ(A)

which are E-valid in S

with respect to J , the (closed) derivation structure

....
A ≡ B

....
ϕ(A)

[ϕ(B/A)]
....
F

F
≡E

is E-valid in S′ with respect to J ′, or reduces to derivation structures,
which are E-valid in S′ with respect to J ′.
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B ≡ A
A ≡ B

sym ⇝ B ≡ A
A ≡ B

sym

....
ϕ(A)

[ϕ(B/A)]1
....
C

C
≡E.1

⇝

....
B ≡ A

[B]1

B ≡ B
≡I.1

[A ≡ B]2

A ≡ B
≡E.2

....
ϕ(A)

[ϕ(B/A)]3
....
C

C
≡E.3

Example 5. Justification of sym using E-validity and analytic approach
to identity.

Examples of E-valid derivations In this section, we will analyse E-va-
lidity of some natural deductions rules by providing appropriate justifica-
tions. Just as in the case of examples for I-validity, rules are instances
of open derivations with exactly one open assumption each. According to
point (4) of definition 4.1 we are going to proceed with reductions of those
derivations assuming that there exists (at least) one valid derivation for the
open assumption in question, analogically to the I-validity examples.

When examining the validity concerning definition 4.1 we start with an
assumption that the rule in question is valid. Then from the conclusion of
that rule an atomic formula is derived, with an application of an elimination
rule for the main connective in the conclusion. In the next step, the formula
C is derived from the premiss of the given rule. If the last reduction is
successful the rule is valid according to E-validity.

The example of rule sym in the analytic approach to the ISCI was not
I-valid (see Ex. 1). However, it proves to be E-valid (see Ex. 5). In the
first step we assume that the rule sym is valid and we apply the elimination
rule for the ≡ connective: therefore, we assume that (1) there is a valid
closed derivation from which we can conclude a formula ϕ with at least
one occurrence of formula A, and (2) there is a valid close derivation with
formula ϕ(B) (that is a formula ϕ with at least one occurrence of A replaced
by B) as a (discharged) assumption and C as a conclusion; and we derive
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a conclusion C. In the next step, analogically to previous examples we
derive C solely from the premiss of the rule sym. There are no additional
open assumptions, therefore rule sym is valid.

An analogical method is applied in the case of E-valid rule and R2 (see
Ex. 6).

A ≡ B

(A&B) ≡ (B&A)
R2 ⇝ A ≡ B

(A&B) ≡ (B&A)
R2

..

..
ϕ(A&B)

[ϕ((B&A)/(A&B))]1
....
C

C
≡E.1

⇝

..

..
A ≡ B

[A&A]1

(A&A) ≡ (A&A)
(≡I.1)

[(A&B) ≡ (B&A)]2

(A&B) ≡ (B&A)
≡E.2

....
ϕ(A&B)

[ϕ((B&A)/(A&B))]3
....
C

C
≡E.3

Example 6. Justification of R2 using E-validity and analytic approach
to identity.

In the case of invalid rule R3 (see Ex. 7), to conclude C the formula
A ≡ B is needed but we cannot discharge it as an assumption. Thus, the
derivation structure is no longer closed and the rule R3 is E-invalid.

A&B

(A&B) ≡ (B&A) ��R3 ⇝ A&B

(A&B) ≡ (B&A) ��R3

....
ϕ(A&B)

[ϕ((B&A)/(A&B))]1
..
..
C

C
≡E.1

⇝

�
�
�

.

...
A ≡ B

[A&A]1

(A&A) ≡ (A&A)
(≡I.1)

[(A&B) ≡ (B&A)]2

(A&B) ≡ (B&A)
≡E.2

....
ϕ(A&B)

[ϕ((B&A)/(A&B))]3
....
C

C
≡E.3

Example 7. R3 cannot be justified using E-validity and analytic
approach to identity.

We can also analyse these rules in the synthetic approach. The steps
taken in the reductions are very similar to the analytic approach. In the
case of the rule sym (see Ex. 8), we begin by assuming that the rule in
question is valid and apply the ≡ .2 elimination rule to the conclusion: thus,
we assume that there is at least one closed, valid derivation from which we
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B ≡ A
A ≡ B

sym ⇝ B ≡ A
A ≡ B

sym

[A ⊃ B]1
...
.
C

C
≡2.1

⇝

B ≡ A

[B ≡ B]1

B ≡ B
≡1.1

[(B ≡ B) ≡ (A ≡ B)]2

(B ≡ B) ≡ (A ≡ B)
≡3.2

[(B ≡ B) ⊃ (A ≡ B)]3

(B ≡ B) ⊃ (A ≡ B)
≡2.3

[B ≡ B]4

B ≡ B
≡1.4

[A ≡ B]6

[A ⊃ B]5
....
C

C
≡2.5

C
⊃.6

Example 8. Justification of sym using E-validity and synthetic approach
to identity.

C. Then, we attempt to conclude C from the premiss of the sym rule.
Even though the derivation is rather complex we are successful—there are
no open assumptions, excluding the initial one—the rule sym is E-valid.

Analogically, we can prove that the rule R2 is E-valid (Ex. 9 p. 293).
Interestingly, the rule R3 in the synthetic approach (Ex. 10) fails to

meet the criteria of E-validity for the same reasons as in the analytic ap-
proach. In the last step of the reduction, one of the assumptions is open.
Therefore, the rule R3 cannot be reduced to a closed derivation structure
of required form and is not E-valid.

5. Object identity and propositional identity

Since we are interested in proof-theoretical treatment of propositional iden-
tity connective it would be helpful to look into, at first sight analogous,
characterization of object identity. There is an ongoing debate about the
proof-theoretical characterization of it. Usually, one can add two rules for
a given natural deduction system for First-Order Logic (see [11]).

a = a ref

a = b Pa
Pb

rep

can conclude atomic C from (closed) assumption A ⊃ B, and we conclude
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A ≡ B
(A&B) ≡ (B&A)

R2 ⇝ A ≡ B
(A&B) ≡ (B&A)

R2

[(A&B) ⊃ (B&A)]1
....
C

C
≡2.1

⇝

A ≡ B

[A ≡ A]1

A ≡ A
≡1.1

[(A ≡ A) ≡ (B ≡ A)]2

(A ≡ A) ≡ (B ≡ A)
≡3.2

[(A ≡ A) ⊃ (B ≡ A)]3

(A ≡ A) ⊃ (B ≡ A)
≡2.3

[A ≡ A]4

A ≡ A
≡1.4

[B ≡ A]5

B ≡ A
⊃.5

A ≡ B [(A&B) ≡ (B&A)]6

(A&B) ≡ (B&A)
≡3.6

[(A&B) ⊃ (B&A)]7

C
≡2.7

Example 9. Justification of R2 using E-validity e-validity and synthetic approach to identity.
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A&B

(A&B) ≡ (B&A) ��R3 ⇝ A&B

(A&B) ≡ (B&A) ��R3

[(A&B) ⊃ (B&A)]1
..
..
C

C
≡2.1

⇝

[A ≡ A]1

A ≡ A
≡1.1

[B ≡ B]2

B ≡ B
≡1.2

[(A ≡ B) ≡ (A ≡ B)]3

(A ≡ B) ≡ (A ≡ B)
≡3.3

[(A ≡ B) ⊃ (A ≡ B)]4

(A ≡ B) ⊃ (A ≡ B)
≡2.4

�
�
�

....
A ≡ B

[(A ≡ B)]5

(A&B) ≡ (B&A)

(A&B) ≡ (B&A)
⊃.5

[(A&B) ⊃ (B&A)]6

C

C
⊃.6

Example 10. R3 cannot be justified using E-validity and synthetic approach to identity.
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The argument against such a treatment of identity is that it is against
Gentzen’s dictum that introduction rules for a given operator justify elim-
ination rule(s) for it. It seems that ref does not justify rep, at least in
a way analogous to the way the rules for the connectives like conjunction
or implication do—introduction rule produces only reflexive identities, but
elimination rule assume an arbitrary identity.

One of the rival propositions is to go back to Leibnizian laws of identity:

(P1) ∀P∀x, y((Px ⊃⊂ Py) ⊃ x = y)—identity of indiscernibles

(P2) x = y ⊃ (Px ⊃⊂ Py)—indiscernibility of identicals

Intuitively, P1 gives us grounds for asserting identities while P2 enables
us to infer something from it, when it has been already established [13].
The problem is that P1 requires Second-Order Logic to bind predicate
variables. But we can somehow encode it in a natural deduction rule by
means of a restriction of its use. The following rule:

[Pa]
....
Pb

a = b
P1

can be used, provided P does not occur free in any assumption other than
Pa. Then elimination rule follows from the introduction rule:

a = b Pa
Pb

P2

and standard detour conversions can be applied—the following derivation

[Pa]
....
Pb

a = b
P1

Pa
Pb

P2

reduces to

Pa....
Pb

The thoughtful discussion of these two approaches can be found in [9].
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Unfortunately, Leibnizian approach seems not to work in the context of
propositional identity. Assume we were to accept the following rule (where
C(A) denotes a formula C having a formula A as a subformula):

[C(A)]
....

C(B)

A ≡ B
I

with strong side condition that the rule can be applied if formula C (and
any of its subformulas) does not occur in any assumption other than the one
specified in the rule scheme. Then we would be able to prove A&B ≡ B&A:

[(A&B)&C]

A&B
B

[(A&B)&C]

A&B
A

B&A

[(A&B)&C]

C
(B&A)&C

A&B ≡ B&A
I

which should not be provable in the basic logic ISCI (it is considered valid
in some of its extensions though).

6. Conclusions

In the context of pure intuitionistic logic proof-theoretic semantics based
on elimination rules can be equivalent to semantics based on introduction
rules. The differences arising from these two approaches are mostly of
philosophical and procedural nature. However, it is more complicated in
the context of ISCI. Propositional identity is different than other intuition-
istic connectives. We can introduce intuitionistic disjunction having proved
one of its disjuncts. Similarly, one can introduce intuitionistic implication
when a derivation of the consequent from the antecedent is given. Yet,
no formula of the form A ≡ B can be obtained from its subformulae only,
with the exception of A ≡ A. As we have seen on examples in this pa-
per, it follows that the approach based on elimination rules works well in
the extension of intuitionistic logic we have considered. It is also philo-
sophically plausible—the fact that identity cannot be synthesised from its
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subformulae does not mean that we cannot hypothetically reason about
identities and establish some of the desired properties, such as symmetry
or transitivity. Moreover, the approach based on elimination rules is natu-
rally compatible with Wittgenstein’s dictum. When we are inside a certain
Sprachspiel sometimes only decomposition rules (elimination rules) for cer-
tain operators exists. Consider equality between real numbers. There is no
effective way of establishing that two reals are equal, but we can still claim
that equality between real numbers is an equivalence relation. It would be
interesting to compare these two paradigms using some other intensional
propositional operators.
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Department Psychology and Cognitive Science
ul. Szamarzewskiego 89/AB
60-568 Poznań, Poland
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