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Abstract

Jaśkowski’s discussive (discursive) logic D2 is historically one of the first para-

consistent logics, i.e., logics that ‘tolerate’ contradictions. Following Jaśkowski’s

idea to define his discussive logic by means of the modal logic S5 via special

translation functions between discussive and modal languages and supporting

at the same time the tradition of paracomplete logics being the counterpart of

paraconsistent ones, we present a paracomplete discussive logic Dp
2.
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1. Introduction

The idea to set up paracomplete versions of Jaśkowski’s discussive1 logic
D2 [23, 22], commonly accepted to be among the pioneering paraconsis-
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tent logics, may appear to the reader as a contradiction in terms.2 S/He
might think that the present paper is, at best, of insignificant and techni-
cal importance or is, at worst, about an unconventional and deliberately
provocative interpretation of D2 which has now become a classic. What
we would like to avoid in this paper, foremost, is giving the reader the
impression that D2 might be argued not to be paraconsistent. We would
not like the reader to get the impression that setting up a system, where
p →d (¬p →d q) is a theorem, is in line with Jaśkowski’s original ideas on
discussive implication →d.

On the contrary, we would like to stress that while presenting his view
on the Duns Scotus law (see [23]), Jaśkowski points out that, since antiq-
uity, Aristotle’s view that two contradictory statements are not both true
has been a subject of criticism. Jaśkowski emphasizes that in the nine-
teenth and twentieth centuries, these views revived, under which it was
pointed out that there are convincing arguments that lead to contradictory
conclusions. So, he aimed to construct a system in which the implicational
law of overfilling p→ (¬p→ q) is not valid. The idea behind the construc-
tion of such a system was as follows: first, with regard to inconsistent sets
of statements, such a system does not always lead to overfilling of the set
of conclusions; second, it is supposed to be so rich as to enable practical
inference; and third, it should have an intuitive justification.

Due to the form of the posed problem, the choice of the implication
plays a crucial role in building such a system. Originally, using the modal
operator of possibility, Jaśkowski introduced discussive implication and, on
its basis, also the discussive equivalence. The system of modal sentences
that results from enriching the modal logic S5 with the relevant definitions
of discussive connectives is denoted as M2. On the basis of M2 Jaśkowski
is defining the system of the two-valued discussive sentential calculus. This
logic is quite rich and allows for the rejection of the implicational law of
overfilling.

2Following Jaśkowski’s approach [23, 22], we call a logic L paraconsistent iff there
are formulas A and B such that A → (¬A → B) is not valid in L. Following Akama and
da Costa [3], we call a logic L paracomplete iff there is a formula A such that A∨¬A is
not valid in L. This definition has already been used by Sette and Carnieli [47], although
they preferred the term (nowadays, rarely used) weakly-intuitionistic logic. For the other
definitions of paralogics (logics that are paraconsistent or paracomplete), the reader is
addressed to [3, 40].
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Interestingly, due to the use of classical conjunction in Jaśkowski’s first
paper [23] on discussive logic, one might suppose that discussive logic is
non-adjunctive. And indeed, while presenting examples of formulas that are
not theses of discussive logic, Jaśkowski considers p→d (q →d (p∧ q)). He
gives intuitions accompanying this: due to the fact that a certain thesis P
and another thesis Q were put forward in the discussion, it does not follow
that the thesis P ∧Q was also put forward, as it may happen that theses
P and Q were sustained by different participants in the discussion. The
intuitive explanation goes along with the formal justification. Of course,
the use of classical conjunction leads to (p ∧ ¬p) →d q, a version of the
overfilling law that is a thesis of such a variant of the discussive system.3

And only thanks to the non-adjunctive character of it, the implicational
version of the overfilling law does not become a thesis.

However, the history of discussive logic does not end with [23]. What
is nowadays treated as proper discussive logic is its variant with discussive
conjunction. Discussive conjunction completing the language of D2 is given
in a short paper [22]. Only there discussive conjunction ∧d is introduced
and in this way, the formula p →d (q →d (p ∧d q)) is becoming a thesis of
D2. On the other hand, (p ∧d ¬p) →d q is not a thesis of this final version
of D2. At least to some point, the second paper on discussive logic was
much less known than the first one. This was due to the fact that the paper
on discussive conjunction was written in Polish and much later translated
into English.4

On the other hand, we do not mean here Jaśkowski’s discussive logic
could not tolerate non-standard approaches. See, for example, [32], where
an extended version of Jaśkowski’s model of discussion with debaters em-
ploying modal operators explicitly is presented.

The motivation for this paper stems from conventional sources. First, it
correlates to the fact that paraconsistent and paracomplete logics co-exist
harmonically, with the latter being a junior counterpart of the former. (See
also endnote 21.) Moreover, we argue below that the logic we present here
is not the first paracomplete discussive logic in the literature. The second
conventional source is to employ modal logic (generally, S5) in defining

3Already, this fact could be used as a factor showing that Jaśkowski model of dis-
cussion can be applied to explore a non-paraconsistent domain as well.

4A detailed discussion of the subject may be found in [13].
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discussive connectives. Hence, we explore the possibility of changing some
of the usual definitions to achieve the clear-cut effect that paracomplete
logic results in.5 Let us detail these sources.

Despite the fact that in [2] Akama, Abe, and Nakamatsu do not dub
their constructive discursive logic with strong negation, CDLSN, paracom-
plete, there is no counterargument for not doing it. In Section 6 below, we
provide a comparative analysis of CDLSN and our logic. Here we would
like to stress the fact that the Jaśkowskian ideas, which led to one of the
first paraconsistent logics ever, permit a discussive paracomplete logic such
as CDLSN and a non-discussive paracomplete logic such as ours. This
view reveals the pair of paraconsistency–paracompleteness as a harmonious
tandem rather than a strictly opposed dichotomy. Indeed, the dichotomy
in question reveals itself strikingly in the case of many-valued logics.6 In
contradistinction to paraconsistent logic, which is sometimes dubbed logic
with truth-value gluts because a formula might be true and false simultane-
ously, paracomplete logic7 is sometimes dubbed logic with truth-value gaps
because a formula might be neither true nor false simultaneously. Let us
confine ourselves to the case of three-valued logics for this approach to para-
complete logic seems to be the most popular in the literature: A formula
of this kind is assigned the third truth-value which is not a designated one.
Hence, the law of excluded middle and certain inference rules related to it
fail (the italics are not ours): “A paracomplete logic is a logic, in which
the principle of excluded middle, i.e., A ∨ ¬A is not a theorem of that

5Notice that the first formal system, consciously conceived as a logic invalidating
Duns Scotus law, was developed by Stanis law Jaśkowski in 1948 [23], while ideas that
can be regarded as the basis of paracomplete logics were explored in the 1960s (for
example, [50]), with formal investigations in [29].

6Note that each logic that is thoroughly discussed in this paper is bivalent. Many-
valuedness is needed to clarify the argument. For this aim, we use the terms ‘logic
with truth-value gluts’ and ‘logic with truth-value gaps’, which come from many-valued
logic. At that, we warn against the identification of ‘logic with truth-value gluts’ with
paraconsistent logic and ‘logic with truth-value gaps’ with paracomplete logic. First,
not all paraconsistent and paracomplete logics are many-valued. Second, logics with
truth-value gluts and gaps are not always paraconsistent and paracomplete ones. As
was shown in [48], many-valued logics (with gaps and gluts) satisfying Rosser and Tur-
quette’s standard conditions [45, p. 26] have classical consequence relation. However, in
many-valued semantics, gluts usually lead to paraconsistency, and gaps usually lead to
paracompleteness.

7Among the first papers where this term appears are [29, 30].
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logic” [3, p. 8]. Note that A→ (¬A→ B), one of the Jaśkowskian stimuli,
might be a paracomplete theorem, and the situation is upside-down in the
case of paraconsistency (A ∨ ¬A is a D2-theorem).

To conclude the detalization of the second source, we find it proper
to briefly enlist some of the most famous paracomplete logics (apart from
intuitionistic logic and Kolmogorov’s system [25]): Kleene’s strong three-
valued logic K3 [24], whose absence of theoremhood led to setting up three-
valued paracomplete logics with theoremhoods and robust implications (the
ones validating modus ponens, etc.). Obviously, its implication extensions
are paracomplete, among them  Lukasiewicz’s three-valued logic  L3 [31] and
the three-valued logic PComp (S lupecki, Bryll, and Prucnal are likely to be
its authors [49]; the author of the name PComp is Popov [42]). There are
other well-known three-valued paracomplete logics: Kleene’s weak three-
valued logic Kw

3 [24], Bochvar’s B3 [10], Heyting-Gödel-Jaśkowski’s G3 [20,
18, 21], and Sette and Carnielli’s I1 [47]. As for four-valued paracomplete
logics, Pietz and Riveccio’s [41] ETL deserves attention. Most fuzzy logics
are paracomplete (and almost none of them is paraconsistent; see [7, 15]
for some rare examples of paraconsistent fuzzy logics). At last, let us
mention paradefinite [6] or paranormal [9, 43] logics, i.e., logics which are
both paracomplete and paraconsistent. The most influential logic among
them is Anderson-Belnap’s FDE [5].

The harmonious tandem discussed above seems to be more striking if
the reader pays attention to the fact that the Jaśkowskian ideas in question
were not axiomatized by himself but later. (Let us, again, refer the reader
to status quo in [38].) As a result, Jaśkowski’s followers give his semi-formal
intuitions about connecting robust discussive reasoning with S58 different
(even mutually contradicting) formal insights. Roughly, the key points of
those techniques are the same, though: two translation functions from a
discussive language into a modal language, and vice versa together with
the notion of the ‘M-counterpart of S5’ introduced by Perzanowski [39],
where ‘M’ stands for the modal possibility operator. Our approach, in
fact, follows the spirit of the techniques in question in spite of mirror-like
transformations of their key points. The notion of the ‘L-counterpart of
S5’, where ‘L’ stands for the modal necessity operator, is employed because
the transformed translation functions employ the necessity operator rather

8Furmanowski proves that S4 is enough to establish this connection [16]. This result
was strengthened by Perzanowski [39], and Nasieniewski and Pietruszczak [33, 34].
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than the possibility one. As one can see, it is not essential for S5, but it
would be if the whole strategy were applied, for example, to non-normal
modal logics. The notion of ‘L-counterpart of S5’ was also introduced by
Perzanowski, and it naturally corresponds to the set LS5 of all those S5-
theses at the beginning of which there is the necessity operator that was
used, in particular, by Kotas in giving his axiomatization of D2. Now the
ray highlights discussive left-, right disjunction rather than discussive left-,
right conjunction, as it has been done in the literature before. Hence, the
difference between paraconsistency and paracompleteness in the discussive
setting is shifted from the standard criterion that certain formulae are (not)
theorems of the logic in question to the non-standard criterion that certain
connectives are to be especially treated within certain discussive logics.
On this path, we believe, some alternatives to Jaśkowski’s, Akama-Abe-
Nakamatsu’s, and our approaches to discussive logic might be discovered.

2. On Jaśkowski’s discussive logic D2

Following Omori and Alama [38], we distinguish between the three lan-
guages, L , Lr, and Ll, over which D2 can be built. Note that such
a possibility is also used in a question asked by João Marcos and con-
sidered in [35]. The former has the alphabet {P,¬,∨,→d,∧, (, )}, where
P = {p, q, r, s, p1, . . .} is the set of propositional variables. The languages
Lr and Ll have right and left discussive conjunctions ∧r

d and ∧l
d, respec-

tively, instead of ∧. The sets of all L -, Lr-, and Ll-formulas are defined
in the standard way and denoted via F , Fr, and Fl, respectively. We
denote a propositional variable (in the metalanguage) by P , Q, etc., a dis-
cussive formula by A, B, C, etc., a modal formula by φ, ψ, γ, etc., and a
set of discussive formulas by X. The language Lm of the modal logic S5
has the alphabet ⟨P, {¬,∨,→,∧,□,♢, (, )}⟩. The set of all Lm-formulas is
defined in the standard way and denoted via Fm. We write φ ↔ ψ for
(φ→ ψ) ∧ (ψ → φ).

Following Jaśkowski, we give a translation function τ from F ∪Fr∪Fl

into Lm.

• τ(P ) = P , for any P ∈ P,

• τ(¬A) = ¬τ(A),

• τ(A ∨B) = τ(A) ∨ τ(B),

• τ(A→d B) = ♢τ(A) → τ(B),

• τ(A ∧B) = τ(A) ∧ τ(B),

• τ(A ∧r
d B) = τ(A) ∧ ♢τ(B),

• τ(A ∧l
d B) = ♢τ(A) ∧ τ(B).
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Jaśkowski [23] originally formulated D2 in L . However, in his next
paper [22] he switched to Lr.

9 The language Ll was used by da Costa, Du-
bikajtis, Kotas, Achtelik and others [27, 14, 1] as well as by Vasyukov [51].

As noted in [38, Proposition 1], τ(A ∧r
d B) ↔ τ(¬(B →d ¬A)) ∈

S5 and τ(A ∧l
d B) ↔ τ(¬(A →d ¬B)) ∈ S5. Obviously, in all three

languages ∧ can be expressed via ¬ and ∨. One may think about the fourth
conjunction, ∧b

d (we write ‘b’ for ‘both’, τ(A ∧b
d B) ↔ ♢τ(A) ∧ ♢τ(B)).

However, as noted by Ciuciura [12, p. 85], (A ∧b
d B) →d (¬(A ∧b

d B) →d C)
will be valid then.

We will denote the formulations of D2 in Lr and Ll, respectively, via
D2r and D2l. The set D2-tautologies is {A ∈ F |♢τ(A) ∈ S5}. Similarly,
the sets of D2r- and D2l-tautologies are {A ∈ Fr | ♢τ(A) ∈ S5} and
{A ∈ Fl | ♢τ(A) ∈ S5}, respectively. Nowadays, D2 is usually referred
to as the corrected version from [22] rather than from [23]: D2 = {A ∈
Fr |♢τ(A) ∈ S5}. It is this version of D2 with right discussive conjunction
that we employ in this paper.

3. Paracomplete versions of D2

We fix three languages, L ∗
r , L ∗

l , and L ∗
b , over which a variant of D2

can be built. The former has the alphabet {P,¬,∨r
d,→w

d ,∧, (, )}, where
∨r
d is right discussive disjunction. The language L ∗

l has left discussive
disjunction ∨l

d instead of ∨r
d.10 The language L ∗

b has ∨l
b
11 instead of ∨r

d.
The sets of all L ∗

r -, L ∗
l -, and L ∗

b -formulas are defined in the standard way
and denoted via F ∗

r , F ∗
l , and F ∗

b , respectively. We define a translation
function σ from one of the languages L ∗

r or L ∗
l or L ∗

b to Lm:

• σ(P ) = P , for any P ∈ P,

• σ(¬A) = ¬σ(A),

• σ(A ∧B) = σ(A) ∧ σ(B),

9Strictly speaking, it was not explicitly said whether the new conjunction was meant
to extend the original language or to replace the classical conjunction.

10As in the case of Jaśkowski’s original model, we also refer to a model of discussion
and try to articulate the respective translations in terms of the possible strategy of
debaters that could be applied by them while formulating their own statements. That is
why we let ourselves to treat the connectives of implication and disjunction as discussive.

11Again, ‘b’ stands for ‘both’.



36  Krystyna Mruczek-Nasieniewska, Yaroslav Petrukhin, Vasily Shangin

• σ(A→w
d B) = □σ(A) → σ(B),

• σ(A ∨r
d B) = σ(A) ∨□σ(B),

• σ(A ∨l
d B) = □σ(A) ∨ σ(B),

• σ(A ∨b
d B) = □σ(A) ∨□σ(B).

We define the following logics (we associate a logic with its set of tautolo-
gies), where i ∈ {l, r,b}:

• Dp
2i = {A ∈ F ∗

i |□σ(A) ∈ S5}.

In what follows, we write Dp
2 for Dp

2l.
Let us emphasize that, as follows from this definition, Dp

2 is embeddable
into S5 the translation σ. It is not excluded that one can map S5 in Dp

2,
but this issue requires further research.

Let us say a few words about the intuitions that led to such an under-
standing of discussive connectives. In the original formulation, we have:
“If anyone states that p, then q”, so from the point of view of a given par-
ticipant, there is not too much needed to say q. Here we have a much more
mistrustful or misgiving position: to say q, it is needed that all participants
state p.

However, the reader is not supposed to consider that such a debating
model is unrealistic. In a sense, each debating model with some debaters
having the power of veto is of this kind. To put it differently, participants
are equal in the Jaśkowskian paraconsistent debating model and are not in
the paracomplete one in quite the same way debaters are equal in expressing
their views on international policy in  Lazienki Królewskie, but in order to
reach consensus in the United Nations Security Council, the power of veto
that its five permanent members have is to be overcome. Generally, to some
extent, at least some part of scientific knowledge and juridical process is
built in this way: it is only when all the sources (witnesses, observers,
experiments, participants in an experiment) jointly say some thesis that
a specific conclusion can be added to the current state of knowledge.

One can similarly understand the case of disjunction (say, ∨r
d). Either I

am saying p or everyone is stating q, so this would express a kind of dilemma
where we have an opposition of my own statements against statements
expressed by all the other debaters. Note that the Jaśkowskian disjunction
is classical; hence, p ∨ ¬p is valid there to the effect that “Everyone is
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stating that p∨¬p” expresses the capacity of any participant to state this
particular logical law in the course of a debate independently of statements
expressed by the other debaters. Paracomplete disjunction here is not
classical; hence, p ∨r

d ¬p is invalid here to the effect that the underlying
dilemma “Either I am saying p or everyone is stating that ¬p” is, obviously,
not characteristic of any debate. To be sure, the paracomplete model of
discussion allows any participant to state logical laws, too, but p ∨r

d ¬p is
not among them.

Interestingly, discussive conjunction and disjunction are, in a sense, in-
terdefinable. More strictly, if we would like to compare standard discussive
logics and paracomplete discussive ones, we can use some additional trans-
lations that show that particular logics are interdefinable. This could be
proved inductively by restricting languages to the {¬,∧l

d}-part on the dis-
cussive side and to the {¬,∨l

d}-part on the paracomplete side. Of course,
this could also be extended to the full languages. So, using inductive hy-
potheses, we would obtain:

τ(¬(¬A ∧l
d ¬B)) = ¬(♢¬τ(A) ∧ ¬τ(B)) ↔ ¬♢¬τ(A) ∨ ¬¬τ(B) ↔

□τ(A) ∨ τ(B) ↔by ind □σ(A) ∨ σ(B) = σ(A ∨l
d B),

σ(¬(¬A ∨l
d ¬B)) = ¬(□¬σ(A) ∨ ¬σ(B)) ↔ ¬□¬σ(A) ∧ ¬¬σ(B) ↔

♢σ(A) ∧ σ(B) ↔by ind ♢τ(A) ∧ τ(B) = τ(A ∧l
d B).

The logic Dp
2 has the following axioms (where ⊥ denotes p ∧ ¬p).

Ax1 A→w
d (B →w

d A)

Ax2 (A→w
d (B →w

d C)) →w
d ((A→w

d B) →w
d (A→w

d C))

Ax3 ¬
(
A ∧ ¬(A ∧A)

)
Ax4 ¬

(
(A ∧B) ∧ ¬A

)
Ax5 ¬

(
¬(A ∧ ¬B) ∧ ¬¬(¬(B ∧ C) ∧ ¬¬(C ∧A))

)
Ax6 ¬¬A→w

d A

Ax7 ¬(¬(A→w
d ⊥) ∧ ¬A)

Ax8 ¬(¬¬((A→w
d ⊥) →w

d ⊥) ∧ ¬A)

Ax9 ¬
(
¬(¬(A ∧ ¬B) →w

d ⊥) ∧ ¬¬(¬(A→w
d ⊥) ∧ ¬¬(B →w

d ⊥))
)

Ax10 ¬
(
A ∧ ¬¬(A→w

d ⊥)
)

Ax11 ¬
(
¬
(
¬(A→w

d ⊥) ∧ ¬B
)
∧ ¬(A→w

d B)
)
.

Ax12 ¬
(
(A→w

d B) ∧ ¬¬(¬(A→w
d ⊥) ∧ ¬B)

)
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Ax13 ¬
(
(A ∨l

d B) ∧ ¬¬(¬¬(A→w
d ⊥) ∧ ¬B)

)
Ax14 ¬

(
¬(¬¬(A→w

d ⊥) ∧ ¬B) ∧ ¬(A ∨l
d B)

)
Ax15 A→w

d

((
¬¬

(
¬(A ∧ ¬B) →w

d ⊥
)
→w

d ⊥
)
→w

d B
)

Ax16 A→w
d ¬(A→w

d ⊥)

Ax17 ¬(A ∧ ¬B) →w
d (A→w

d B)

A A→w
d B

B
(MPw

d )

Lemma 3.1 (Deduction theorem). X,A ⊢Dp
2
B iff X ⊢Dp

2
A→w

d B.

Proof: The proof is textbookian in the presence of Ax1, Ax2, and (MPw
d ).

One can see that any proof given on the basis of classical logic expressed
in the language with ¬ and ∧ by means of Ax3–Ax5 and the respective
form of modus ponens can be transferred into a Dp

2-proof by Ax17.

Fact 3.2. For any thesis A of classical logic in the language with ¬ and ∧,
⊢Dp

2
A.

3.1. Lewis’s intensional implication and disjunction

Intensional implication and disjunction introduced by Lewis in the systems
S1-S5 had a deep influence on modern modal logic (especially the former,
which is mostly dubbed strict implication). It is the well-knownness of in-
tensional implication and disjunction that allows us to skip details (Lewis’s
motivation to introduce it, analyzing its pros and cons, etc.) and address
those properties of them that concern the purpose of our study only.12 We
begin with strict implication, which we do not denote with the Lewisian
fishhook but with →L, so that its traditional definition looks as follows:
φ →L ψ =df □(φ → ψ). We are interested in two arguments: the one by
Jaśkowski who rejects →L in the quality of discussive implication, and the
one by Lewis, who rejects the known classical equivalence between impli-
cation and disjunction.

12An accurate introduction to Lewis’s ideas and their impact on modern modal logic
is in [8].
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Let us remind the reader that Jaśkowski devotes a passage to the
Lewisian implication while describing the known solutions to the prob-
lem of formulating the logic of inconsistent systems [23, p. 40]. In more
detail, he rejects it due to its weakness: “But the set of the theses which
include strict implication only, and do not include material implication,
is very limited” [23, p. 40].13 Our implication is stronger than →L be-
cause □(φ → ψ) |=S5 □(□φ → ψ), and the opposite is false, though.14

Moreover, in contrast to →L, our implication is not paraconsistent because
¬A→w

d (A→w
d B) is valid. On the other hand, one of Lewis’s motivations

is to avoid paradoxes of material implication which are valid in our sys-
tem.15 Our implication is similar to →L with respect to the classical one,
viz., it is stronger than it because φ→ ψ |=S5 □φ→ ψ, and the opposite is
false, though. This fact means that Quine’s critique on →L, which roughly
bases on the fact that even for S1, if φ→ ψ is a theorem, then φ→L ψ is
a theorem, either, holds true for our implication [8].

Another suggestion by Lewis is about the classical equivalence between
implication and disjunction: A → B =df ¬A ∨ B. In our logic, it fails:
¬A ∨l

d B |= A→w
d B, and the opposite is false, though, because □(□¬φ ∨

ψ) |=S5 □(□φ→ ψ) with the opposite being false. This is in sharp contrast
to Lewis, who bases upon MacColl’s ideas that the failure of the above-
mentioned equivalence is caused by ¬A∨LB ̸|= A→L B, where ∨L stands
for the Lewisian disjunction, while the opposite is true: “Lewis infers that
disjunction too must be given a new intensional sense, according to which
(p ∨ q) holds just in case if p were not the case it would have to be the
case that q. Considerations of this sort, based on the distinction between
extensional and intensional readings of the connectives, were not original
to Lewis. Already [. . . ] MacColl [. . . ] claimed that (p → q) and (¬p ∨ q)
are not equivalent: (¬p ∨ q) follows from (p→ q), but not vice versa” [8].

13Perzanowski, who is the editor of the contemporary translation of both Jaśkowski’s
papers, notes: “Observe that the present criticism in comparison with the previous
one, is rather weak. Some calculi of the strict implication can thereby be treated as
paraconsistent ones” [23, p. 56].

14Recall that the same analysis shows that our implication is stronger than the
Jaśkowskian one.

15Note that avoiding those paradoxes is not our motivation whatsoever.
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4. Soundness and completeness

4.1. L-counterpart of S5

First of all, let us recall the axiomatics of the modal logic S5. It can be
axiomatized by following axioms and rules16:

All the axiom schemes of CPL (CPL)

□(φ→ ψ) → (□φ→ □ψ) (K)

□φ→ φ (T)

□φ→ □□φ (4)

♢□φ→ φ (Bd)

♢φ↔ ¬□¬φ (Def♢)

φ φ→ ψ

ψ
(MP)

φ

□φ
(Nec)

Instead of (Bd), the formula (B) φ → □♢φ is usually used. As it
is known (see, e. g., [17, p. 44–45]), these formulas are replaceable in all
normal logics.

Da Costa and Dubikajtis [14] as well as Omori and Alama [38] used the
notion of “M-counterpart of S5” denoted as M(S5) (following Perzanowski’s
terminology [39]), where M(S5) = {φ ∈ Fm| ⊢S5 ♢φ}. While changing
♢ to □ in the definitions of the discussive connectives, we also incline to-
wards an application of the same point of view when formally explicating
the point of view of an external observer in Jaśkowski’s model of discussion.
In the presented variant, the external observer would be more careful by
accepting a given discussive thesis only when its translated modal version
is necessarily accepted. That is why we use the notion of “L-counterpart of
S5” denoted as L(S5) (following Perzanowski’s terminology again, where
L(S5) = {φ ∈ Fm| ⊢S5 □φ}), in the definition of the proposed vari-
ant of discussive logic. However, observe the below Fact that follows
from [39, (3.6)].

Fact 4.1. L(S5) = S5.

Let us give an axiomatization of L(S5) (taking into account the given
above Fact 4.1, it is also an axiomatization of S5) corresponding to the

16‘CPL’ is for classical propositional logic, of course. We can consider any fixed
axiomatization of CPL or just take all theses of CPL.
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recalled above axiomatization of S5 and useful for our next considerations.
Thus, we present the system JL. It corresponds also in a way to Kotas’s
axiomatization of LS5 — the set of all theses of S5 having □ at the be-
ginning [26]. The relation ⊢JL is determined by the following axioms and
rules of inference.

AJL1 ♢□φ, where φ is an axiom scheme of a fixed axiomatization of
CPL,

AJL2 ♢□(□(φ→ ψ) → (□φ→ □ψ))

AJL3 ♢□(□φ→ φ)

AJL4 ♢□(φ→ ♢φ)17

AJL5 ♢□(□φ→ □□φ)

AJL6 ♢□(♢□φ→ φ)

AJL7 ♢□(♢φ↔ ¬□¬φ)

RJL1
φ ♢□(φ→ ψ)

ψ

RJL2
φ

□φ

Lemma 4.2. If ⊢JL φ, then ⊢S5 □φ.

Proof: Induction on the length of a derivation of φ in JL. Suppose that
⊢JL φ. Then φ is an axiom or is obtained by RJL1 or RJL2.

Let φ be an axiom. It is standard that if φ ∈ CPL or it is an instance
of (K), (T), (Td), (4), (Bd) or (Def♢), then □♢□φ ∈ S5. Thus, ⊢S5 □♢□φ,
i.e., ⊢S5 □φ.

17Of course, (Td): φ → ♢φ is derivable on basis of the given axiomatization of S5.
Note also that the axiom AJL4 is needed to rebuild ♢□ before formulae obtained by
(MP) (see Lemma 4.3 below). The need for AJL4, whose derivability on the basis of
the rest of the system ⊢JL goes beyond the scope of the paper, is connected with saving
1–1 correspondence between L(S5) and JL.
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Let φ be obtained by RJL1 from some formulas ψ and ♢□(ψ → φ).
By the inductive hypothesis, ⊢S5 □ψ and ⊢S5 □♢□(ψ → φ). Since ⊢S5

□♢□F ↔ □F , for any formula F (see, e. g. [17, p. 43]), we have ⊢S5 □(ψ →
φ). Since ⊢S5 □(ψ → φ) → (□ψ → □φ), we have ⊢S5 □φ.

Let φ be obtained by RJL2 from some formula ψ. Then φ has the
form of □ψ. By the inductive hypothesis, ⊢S5 □ψ. By Gödel’s rule, we get
⊢S5 □□ψ, i.e., ⊢S5 □φ.

Lemma 4.3. If ⊢S5 φ, then ⊢JL ♢□φ.

Proof: Induction on the length of a derivation of φ in S5. Suppose that
⊢S5 φ. Then φ is an axiom or is obtained by modus ponens (MP) or by
Gödel’s rule.

Let φ be an axiom. Then ♢□φ is an axiom of JL.
Let φ be obtained by (MP) from some formulas γ and γ → φ. By

the inductive hypothesis, ⊢JL ♢□γ and ⊢JL ♢□(γ → φ). Using AJL6

(i.e., ♢□(♢□γ → γ)) and RJL1, we get ⊢JL γ. Then, by RJL1, ⊢JL φ.
By RJL2, ⊢JL □φ. By AJL4, ⊢JL ♢□(□φ → ♢□φ). Hence, by RJL1,
⊢JL ♢□φ.

Let φ be obtained by Gödel’s rule from some formula γ. Then φ has
the form of □γ. By the inductive hypothesis, ⊢JL ♢□γ. Using AJL6 and
RJL1, we get ⊢JL γ. Applying RJL2 twice, we obtain ⊢JL □□γ. By AJL6

and RJL1, ⊢JL ♢□□γ, i.e., ⊢JL ♢□φ.

Lemma 4.4. φ ∈ L(S5) iff ⊢JL φ.

Proof: Suppose that φ ∈ L(S5). Then ⊢S5 □φ, by the definition of
L(S5). By Lemma 4.3, ⊢JL ♢□□φ. By AJL6, ⊢JL ♢□(♢□□φ→ □φ). By
RJL1, ⊢JL □φ. By AJL3, ⊢JL ♢□(□φ→ φ), hence, using RJL1, we infer
⊢JL φ.

Suppose that ⊢JL φ. Then ⊢S5 □φ, by Lemma 4.2. By the definition
of L(S5), φ ∈ L(S5).

4.2. L-counterpart of S5 and paracomplete discussive logic

The system JL introduced above employs a modal rather than a discussive
language.

Let us introduce a translation function π from Lm to L ∗
r , L ∗

l , and L ∗
b

(where ⊥ denotes p ∧ ¬p):
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• π(P ) = P , for any P ∈ P,

• π(¬φ) = ¬π(φ),

• π(♢φ) = ¬π(φ) →w
d ⊥,

• π(□φ) = ¬(π(φ) →w
d ⊥),

• π(φ ∧ ψ) = π(φ) ∧ π(ψ).

• π(φ ∨ ψ) = ¬(¬π(φ) ∧ ¬π(ψ)),

• π(φ→ ψ) = ¬(π(φ) ∧ ¬π(ψ)).

We are going to use the following two axiomatizations of S5 in the
{¬,∧,□}-language for the reasons connected with the translation π given
above. We use Rosser’s [44, p. 55] axiomatization of CPL in the {¬,∧}-
language.18

The given below consequence relation meant for S5 is denoted by ⊢S5¬∧ :

Ax1 ¬
(
φ ∧ ¬(φ ∧ φ)

)
Ax2 ¬

(
(φ ∧ ψ) ∧ ¬φ

)
Ax3 ¬

(
¬(φ ∧ ¬ψ) ∧ ¬¬(¬(ψ ∧ γ) ∧ ¬¬(γ ∧ φ))

)
Ax4 ¬

(
□¬(φ ∧ ¬ψ) ∧ ¬¬(□φ ∧ ¬□ψ)

)
Ax5 ¬(♢φ ∧ ¬¬□¬φ) ∧ ¬(¬□¬φ ∧ ¬♢φ)

Ax6 ¬(□φ ∧ ¬φ)

Ax7 ¬(□φ ∧ ¬□□φ)

Ax8 ¬(♢□φ ∧ ¬φ)

RS51
φ ¬(φ ∧ ¬ψ)

ψ
RS52

φ

□φ

Let us denote the function from Lm to Lm by δ that operates as π for ¬,
∧, ∨, and →, while for modal operators we assume that δ(♢φ) = ♢δ(φ)
and δ(□φ) = □δ(φ). We have an easy-to-see:

18The original Rosserian axioms look as follows: (1) P ⊃ PP , (2) PQ ⊃ P , (3)
P ⊃ Q. ⊃ .∼(QR)⊃∼(RP ). Note that due to the invalidity of (A →w

d B) →w
d ¬(A∧¬B)

on the basis of Dp
2, one cannot interpret implication in the Rosserian axiomatization

as →w
d .



44  Krystyna Mruczek-Nasieniewska, Yaroslav Petrukhin, Vasily Shangin

Fact 4.5. For any formula φ ∈ Fm

1. φ ∈ S5 iff ⊢S5¬∧ δ(φ),

2. if φ is expressed in the language with {♢,□,¬,∧} and ⊢S5¬∧ φ, then
φ ∈ S5.

We will use another consequence relation denoted as ⊢JL¬∧ that corre-
sponds to ⊢JL.

AJL1 ♢□¬
(
φ ∧ ¬(φ ∧ φ)

)
AJL2 ♢□¬

(
(φ ∧ ψ) ∧ ¬φ

)
AJL3 ♢□¬

(
¬(φ ∧ ¬ψ) ∧ ¬¬(¬(ψ ∧ γ) ∧ ¬¬(γ ∧ φ))

)
AJL4 ♢□¬

(
□¬(φ ∧ ¬ψ) ∧ ¬¬(□φ ∧ ¬□ψ)

)
AJL5 ♢□(¬(♢φ ∧ ¬¬□¬φ) ∧ ¬(¬□¬φ ∧ ¬♢φ))

AJL6 ♢□¬(□φ ∧ ¬φ)

AJL7 ♢□¬(φ ∧ ¬♢φ)

AJL8 ♢□¬(□φ ∧ ¬□□φ)

AJL9 ♢□¬(♢□φ ∧ ¬φ)

RJL1
φ ♢□¬(φ ∧ ¬ψ)

ψ
RJL2

φ

□φ

Fact 4.6. For any formula φ in the language with ♢,□,¬,∧:

⊢JL φ iff ⊢JL¬∧ φ

Lemma 4.7. The following rule is inferable on the basis of Dp
2:

D

¬¬(D →w
d ⊥) →w

d ⊥
(♢□π)
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Proof:

1. D assumption

2. ¬¬(D →w
d ⊥) premiss

3. ¬¬(D →w
d ⊥) →w

d (D →w
d ⊥) Ax6

4. D →w
d ⊥ (MPw

d ): 2, 3

5. ⊥ (MPw
d ): 1, 4

6. D ⊢Dp
2
¬¬(D →w

d ⊥) →w
d ⊥ Lemma 3.1: 1–5

Lemma 4.8. For any axiom Ax of ⊢JL¬∧ , ⊢Dp
2
π(Ax).

Proof:

• The case of AJL1: ♢□¬
(
φ ∧ ¬(φ ∧ φ)

)
.

Since π(♢□¬
(
φ∧¬(φ∧φ)

)
) = ¬¬

(
¬
(
π(φ)∧¬(π(φ)∧π(φ))

)
→w

d ⊥
)

→w
d ⊥, we apply (♢□π) for D = ¬

(
π(φ) ∧ ¬(π(φ) ∧ π(φ))

)
—an

instance of Ax3.

• The case of AJL2: ♢□¬
(
(φ ∧ ψ) ∧ ¬φ

)
.

Since π
(
♢□¬((φ∧ψ)∧¬φ)

)
= ¬¬

(
¬
(
(π(φ)∧π(ψ))∧¬π(φ)

)
→w

d ⊥
)

→w
d ⊥, we apply (♢□π) for D = ¬

(
(π(φ) ∧ π(ψ)) ∧ ¬π(φ)

)
—an

instance of Ax4.

• The case of AJL3: ♢□¬
(
¬(φ ∧ ¬ψ) ∧ ¬¬(¬(ψ ∧ γ) ∧ ¬¬(γ ∧ φ))

)
.

Since π
(
♢□¬(¬(φ∧¬ψ)∧¬¬(¬(ψ∧γ)∧¬¬(γ∧φ)))

)
= ¬¬

(
¬
(
¬(π(φ)

∧ ¬π(ψ)) ∧ ¬¬(¬(π(ψ) ∧ π(γ)) ∧ ¬¬(π(γ) ∧ π(φ)))
)
→w

d ⊥
)
→w

d ⊥,

we apply (♢□π) for D = ¬
(
¬(π(φ) ∧ ¬π(ψ)) ∧ ¬¬(¬(π(ψ) ∧ π(γ)) ∧

¬¬(π(γ) ∧ π(φ)))
)
—an instance of Ax5.
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• The case of AJL4: ♢□¬
(
¬□(φ ∧ ¬ψ) ∧ ¬¬(□φ ∧ ¬□ψ)

)
.

Since π
(
♢□¬(¬□(φ ∧ ¬ψ) ∧ ¬¬(□φ ∧ ¬□ψ))

)
= ¬¬

(
¬
(
¬¬((π(φ) ∧

¬π(ψ)) →w
d ⊥)∧¬¬(¬(π(φ) →w

d ⊥)∧¬¬(π(ψ) →w
d ⊥))

)
→w

d ⊥
)
→w

d

⊥, we apply (♢□π) forD = ¬
(
¬¬((π(φ)∧¬π(ψ)) →w

d ⊥)∧¬¬(¬(π(φ)

→w
d ⊥) ∧ ¬¬(π(ψ) →w

d ⊥))
)
—an instance of Ax9.

• The case of AJL5: ♢□(¬(♢φ ∧ ¬¬□¬φ) ∧ ¬(¬□¬φ ∧ ¬♢φ)).

Since π(♢□(¬(♢φ ∧ ¬¬□¬φ) ∧ ¬(¬□¬φ ∧ ¬♢φ))) = ¬¬
((

¬((¬π(φ)

→w
d ⊥) ∧ ¬¬¬(¬π(φ) →w

d ⊥)) ∧ ¬(¬¬(¬π(φ) →w
d ⊥) ∧ ¬(¬π(φ) →w

d

⊥))
)
→w

d ⊥
)

→w
d ⊥. We apply (♢□π) for D =

(
¬((¬π(φ) →w

d

⊥)∧¬¬¬(¬π(φ) →w
d ⊥))∧¬(¬¬(¬π(φ) →w

d ⊥)∧¬(¬π(φ) →w
d ⊥))

)
—

an instance of classical thesis that is inferable by Fact 3.2.

• The case of AJL6: ♢□¬(□φ ∧ ¬φ).

Since π(♢□¬(□φ ∧ ¬φ)) = ¬¬
(
¬(¬(π(φ) → ⊥) ∧ ¬π(φ)) →w

d ⊥
)

→w
d ⊥, we apply (♢□π) for D = ¬(¬(π(φ) → ⊥) ∧ ¬π(φ))—an

instance of Ax7.

• The case of AJL7: ♢□¬(φ ∧ ¬♢φ)

Since π(♢□¬(φ∧¬♢φ)) = ¬¬
(
¬(π(φ)∧¬(¬π(φ) →w

d ⊥)) →w
d ⊥

)
→w

d

⊥, we apply (♢□π) for D = ¬(π(φ) ∧ ¬(¬π(φ) →w
d ⊥))—following

from Ax7 by Fact 3.2.

• The case of AJL8: ♢□¬(□φ ∧ ¬□□φ).

Since π(♢□¬(□φ ∧ ¬□□φ)) = ¬¬
(
¬
(
¬(π(φ) →w

d ⊥) ∧ ¬¬(¬(π(φ)

→w
d ⊥) →w

d ⊥)
)
→w

d ⊥
)
→w

d ⊥, we apply (♢□π) forD = ¬
(
¬(π(φ) →w

d

⊥) ∧ ¬¬(¬(π(φ) →w
d ⊥) →w

d ⊥)
)
—an instance of Ax10.

• The case of AJL9: ♢□¬(♢□φ ∧ ¬φ).

Since ♢□¬(♢□φ ∧ ¬φ) = ¬¬
(
¬
(
(¬¬(π(φ) →w

d ⊥) →w
d ⊥) ∧ ¬π(φ)

)
→w

d ⊥
)
→w

d ⊥, we apply (♢□π) for D = ¬
(
(¬¬(π(φ) →w

d ⊥) →w
d ⊥)

∧ ¬π(φ)
)
—an instance of Ax8.
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Now we want to show that in Dp
2, the specific discussive connectives

→w
d and ∨l

d are properly characterized. Such characterizations are in the
form of discussive implications in both directions.

Lemma 4.9. For any C ∈ L ∗
l , it holds ⊢Dp

2
π(σ(C)) →w

d C.

Proof: First, we show that ⊢Dp
2
¬(π(σ(A))∧¬A). To obtain that for any

A, ⊢Dp
2
¬(π(σ(A)) ∧ ¬A), we can prove ¬(π(σ(A)) ∧ ¬A) and additionally

¬(A ∧ ¬π(σ(A))) using simultaneous induction on the construction of A.
The case when A is a variable is trivial due to the fact that (Ax3)–

(Ax5) with (MP) expressed for the language {∧,¬} constitute the complete
axiomatization of classical logic. Similarly, due to the fact that π(σ(¬B)) =
¬π(σ(B)) and π(σ(B∧C)) = π(σ(B))∧π(σ(C)), the cases of ∧ and ¬ follow
by inductive hypotheses for B and C, and extensionality for classical logic
expressed in {∧,¬}.

Case A = B →w
d C.

By definitions ¬
(
π(σ(B →w

d C)) ∧ ¬(B →w
d C)

)
= ¬

(
π(□σ(B) →

σ(C))∧¬(B →w
d C)

)
= ¬

(
¬(¬(π(σ(B)) →w

d ⊥)∧¬π(σ(C)))∧¬(B →w
d C)

)
and ¬

(
(B →w

d C) ∧ ¬π(σ(B →w
d C))

)
= ¬

(
(B →w

d C) ∧ ¬π(□σ(B) →
σ(C))

)
= ¬

(
(B →w

d C) ∧ ¬¬(¬(π(σ(B)) →w
d ⊥) ∧ ¬π(σ(C)))

)
.

Consider the following inference.

1. ¬(B ∧ ¬π(σ(B))) inductive hypothesis

2. ¬(B ∧ ¬π(σ(B))) →w
d ¬(¬(B ∧ ¬π(σ(B))) →w

d ⊥) Ax16

3. ¬(¬(B ∧ ¬π(σ(B))) →w
d ⊥) 1, 2 and (MPw

d )

4. ¬
(
¬(¬(B ∧ ¬π(σ(B))) →w

d ⊥) ∧ ¬¬(¬(B →w
d ⊥) ∧ ¬¬(π(σ(B)) →w

d

⊥))
)

Ax9

5. ¬(¬(B∧¬π(σ(B))) →w
d ⊥) →w

d ¬(¬(B →w
d ⊥)∧¬¬(π(σ(B)) →w

d ⊥))
4, Ax17 and (MPw

d )

6. ¬(¬(B →w
d ⊥) ∧ ¬¬(π(σ(B)) →w

d ⊥)) 3, 5, and (MPw
d )

Next, applying the above inferred formula, an instance of the axiom
Ax11: ¬

(
¬
(
¬(B →w

d ⊥)∧¬C
)
∧¬(B →w

d C)
)
, the inductive hypothesis for

C: ¬(π(σ(C)) ∧ ¬C), and classical logic expressed in {∧,¬} (due to Fact
3.2) we obtain the required thesis ¬

(
π(σ(B →w

d C)) ∧ ¬(B →w
d C)

)
.
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For the case of ¬
(
(B →w

d C)∧¬π(σ(B →w
d C))

)
, consider the following

inference.

1. ¬(π(σ(B)) ∧ ¬B) inductive hypothesis

2. ¬(π(σ(B)) ∧ ¬B) →w
d ¬(¬(π(σ(B)) ∧ ¬B) →w

d ⊥) Ax16

3. ¬(¬(π(σ(B)) ∧ ¬B) →w
d ⊥) 1, 2 and (MPw

d )

4. ¬
(
¬(¬(π(σ(B)) ∧ ¬B) →w

d ⊥) ∧ ¬¬(¬(π(σ(B)) →w
d ⊥) ∧ ¬¬(B →w

d

⊥))
)

Ax9

5. ¬(¬(π(σ(B))∧¬B) →w
d ⊥) →w

d ¬(¬(π(σ(B)) →w
d ⊥)∧¬¬(B →w

d ⊥))
4, Ax17 and (MPw

d )

6. ¬(¬(π(σ(B)) →w
d ⊥) ∧ ¬¬(B →w

d ⊥)) 3, 5, and (MPw
d )

Similarly, using the obtained formula, Ax12, the inductive hypothesis for
C: ¬(C ∧ ¬π(σ(C))) and classical logic expressed in {∧,¬} we obtain the
required formula.

Case A = B ∨l
d C.

By definitions ¬
(
π(σ(B ∨l

d C)) ∧ ¬(B ∨l
d C)

)
= ¬

(
π(□σ(B) ∨ σ(C)) ∧

¬(B ∨l
d C)

)
= ¬

(
¬(¬¬(π(σ(B)) →w

d ⊥) ∧ ¬π(σ(C))) ∧ ¬(B ∨l
d C)

)
.

Again, taking into account ¬(¬(π(σ(B)) →w
d ⊥) ∧ ¬¬(B →w

d ⊥)) and
¬(¬(B →w

d ⊥) ∧ ¬¬(π(σ(B)) →w
d ⊥)), applying an instance of the axiom

Ax14 ¬
(
¬(¬¬(B →w

d ⊥) ∧¬C) ∧¬(B ∨l
d C)

)
, the inductive hypothesis for

C, and extensionality for classical logic expressed in {∧,¬} (due to Fact
3.2) we obtain the required thesis.

The case of ¬
(
(B ∨l

d C)∧¬π(σ(B ∨l
d C))

)
is being treated analogously

with the help of Ax13.
Having proved ⊢Dp

2
¬(π(σ(A)) ∧ ¬A), the required thesis follows by

Ax17.

We need an additional, easy-to-see fact.

Fact 4.10. For any φ ∈ Fm, it holds π(φ) = π(δ(φ)).

Theorem 4.11. For any formula A of the discussive language:

A ∈ Dp
2 iff ⊢Dp

2
A
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Proof: Assume that A ∈ Dp
2. By definitions, □σ(A) ∈ S5, while by Fact

4.5 and definition of δ, ⊢S5¬∧ □δ(σ(A)), and again by Fact 4.5, □δ(σ(A)) ∈
S5. Hence, by Lemma 4.4 we have ⊢JL δ(σ(A)). By Fact 4.6, ⊢JL¬∧

δ(σ(A)). Consider a respective proof φ1, . . . , φn = δ(σ(A)), on the basis
of ⊢JL¬∧ . Now let us consider C1 = π(φ1), . . . , Cn = π(φn) = π(δ(σ(A))),
Cn+1 = π(δ(σ(A))) →w

d A, Cn+2 = A. Using Fact 4.10, we see that
Cn = π(σ(A)), Cn+1 = π(δ(σ(A))) →w

d A = π(σ(A)) →w
d A. By induction

on the length of the proof, we show that for each 1 ⩽ i ⩽ n + 2, ⊢Dp
2
Ci.

The case of axioms follows by Lemma 4.8.
Consider the cases of rules. Assume that φi, where 1 ⩽ i ⩽ n re-

sults from an application of RJL1, that is, there are 1 < j, k < i such
that φk = ♢□¬(φj ∧ ¬φi). By inductive hypothesis ⊢Dp

2
π(φj) and

⊢Dp
2
π(♢□¬(φj ∧ ¬φi)), i.e., ⊢Dp

2
¬¬(¬(π(φj) ∧ ¬π(φi)) →w

d ⊥) →w
d ⊥.

Consider the following sequence:

1. π(φj) by inductive hypothesis

2. ¬¬(¬(π(φj) ∧ ¬π(φi)) →w
d ⊥) →w

d ⊥ by inductive hypothesis

3. π(φj) →w
d

(
(¬¬

(
¬(π(φj)∧¬π(φi)) →w

d ⊥
)
→w

d ⊥) →w
d π(φi)

)
Ax15

4. π(φi) 2 × (MPw
d ): 1, 2, 3

Assume that φi, where 1 ⩽ i ⩽ n results from an application of RJL2,
that is, there is 1 < k < i such that φi = □φj . We have to show that ⊢Dp

2

π(□φj), i.e., ⊢Dp
2
¬(π(φj) →w

d ⊥). By the inductive hypothesis ⊢Dp
2
π(φj).

Consider the following sequence:

1. π(φj) by inductive hypothesis

2. π(φj) →w
d ¬(π(φj) →w

d ⊥) Ax16

3. ¬(π(φj) →w
d ⊥) (MPw

d ): 1, 2

For the last two elements in C1, . . . , Cn, Cn+1, Cn+2 = A we use Lemma
4.9 and (MPw

d ).
The reverse implication is obtained by routine checking.
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5. A modification of axiomatization

Now let us consider only the {¬,→w
d ,∧}-part of Dp

2.19 As the only rule
of inference, let ⊩Dp

2
denote the consequence relation as determined by

(MPw
d ) together with the axiom schemes listed below: Ax1–Ax5, Ax11,

Ax16–Ax17, and

¬((A→w
d B) ∧ (¬(A→w

d ⊥) ∧ ¬B)) (Impcl)

¬(((A→w
d ⊥) →w

d ⊥) ∧ ¬A) (Bd)

One can easily see that by Ax16, Ax17, positive logic expressed with →w
d ,

and classical logic in ¬ and ∧, and (Impcl) we have:

Fact 5.1.

⊩Dp
2
¬(A ∧ ¬B) →w

d (A→w
d ¬(B →w

d ⊥)) (K)

⊩Dp
2

(A→w
d B) →w

d ¬(¬(A→w
d ⊥) ∧ ¬B) (Imp)

Lemma 5.2.

⊩Dp
2
Ax9

⊩Dp
2
Ax12

Proof: By (K), (Imp), positive logic for →w
d we have:

• ¬(A ∧ ¬B) →w
d (A→w

d ¬(B →w
d ⊥)

• (A→w
d ¬(B →w

d ⊥) →w
d ¬(¬(A→w

d ⊥) ∧ ¬¬(B →w
d ⊥))

• ¬(A ∧ ¬B) →w
d ¬(¬(A→w

d ⊥) ∧ ¬¬(B →w
d ⊥))

• ¬
(
¬(¬(A ∧ ¬B) →w

d ⊥) ∧ ¬¬(¬(A→w
d ⊥) ∧ ¬¬(B →w

d ⊥))
)
,

The case of Ax12 is obvious from (Impcl) and classical logic expressed in
the language with ¬ and ∧.

19Since ∨l
d is definable in the considered language, for the language with ∨l

d, one could

just add two axioms: ¬((A∨l
dB)∧((A →w

d ⊥)∧¬B)), ¬(¬(A∨l
dB)∧¬((A →w

d ⊥)∧¬B)).
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Lemma 5.3. For any formula C in the language with {¬,→w
d ,∧}, it holds

⊩Dp
2
π(σ(C)) →w

d C.

Proof: First, we show that ⊩Dp
2
¬(π(σ(A))∧¬A). To obtain that for any

A, ⊩Dp
2
¬(π(σ(A)) ∧¬A), we can prove ¬(π(σ(A)) ∧¬A) and additionally

¬(A ∧ ¬π(σ(A))) using simultaneous induction on the construction of A.
The cases of a variable, ¬ and ∧ are being handled in the same way as

in the proof of Lemma 4.9.
Using the axioms Ax11, Ax16, and Ax17, as well as Ax9 and Ax12

(inferable by Lemma 5.2), we can repeat the proof of Lemma 4.9 in its part
for the case of →w

d .
Having proved ⊢Dp

2
¬(π(σ(A)) ∧ ¬A), the required thesis follows by

Ax17.

Theorem 5.4. For any formula A of the discussive language:

A ∈ Dp
2 iff ⊩Dp

2
A

Proof: Assume that A ∈ Dp
2. By definition, □σ(A) ∈ S5, so also σ(A) ∈

S5. By Fact 4.5 ⊢S5¬∧ δ(σ(A)). There is a proof φ1, . . . , φn = δ(σ(A)) on
the basis of the relation ⊢S5¬∧ . Now we consider a sequence C1 = π(φ1),
. . . , Cn = π(φn) = π(δ(σ(A))), Cn+1 = π(δ(σ(A))) →w

d A, Cn+2 = A. By
Fact 4.10, we see that Cn = π(σ(A)) and Cn+1 = π(σ(A)) →w

d A.
By induction on the length of the proof, we show that for each 1 ⩽ i ⩽

n+2, ⊩Dp
2
Ci. For the case of an axiom scheme Ax ∈ {Ax1, Ax2, Ax3}, we

have π(Ax) is an instance of an axiom scheme of ⊩Dp
2
. For the case of Ax4,

we see that π
(
¬
(
□¬(φ∧¬ψ)∧¬¬(□φ∧¬□ψ)

))
= ¬

(
¬(¬(π(φ)∧¬π(ψ)) →w

d

⊥) ∧ ¬¬(¬(π(φ) →w
d ⊥) ∧ ¬¬(π(ψ) →w

d ⊥))
)
. Thus, by Lemma 5.2, the

required thesis is an instance of a formula provable on the basis of ⊩Dp
2
.

For the case of Ax6, we see that π(¬(□φ ∧ ¬φ)) = ¬(¬(π(φ) →w
d

⊥) ∧ ¬π(φ)) But this follows from the thesis A→w
d A and (Imp).

For the case of Ax7, we have π(¬(□φ∧¬□□φ)) = ¬
(
¬(π(φ) →w

d ⊥) ∧
¬¬(¬(π(φ) →w

d ⊥) →w
d ⊥)

)
. By Ax16 we have A →w

d ¬(A →w
d ⊥) and

¬(A →w
d ⊥) →w

d ¬(¬(A →w
d ⊥) →w

d ⊥), hence A →w
d ¬(¬(A →w

d ⊥) →w
d

⊥), so the required formula follows by (Imp).
For the case of Ax8, we have π(¬(φ ∧ ¬□♢φ)) = ¬

(
π(φ) ∧ ¬¬((¬π(φ)

→w
d ⊥) →w

d ⊥)
)
. However, by (Bd) we have ¬(((¬A→w

d ⊥) →w
d ⊥)∧¬¬A),

hence by classical logic expressed in {¬,∧}, Ax17, by MPw
d we obtain ¬

(
A∧
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¬¬((¬A→w
d ⊥) →w

d ⊥)
)
, so the required scheme is an instance of the last

scheme.
Consider the rule cases. Assume that φi, where 1 ⩽ i ⩽ n results

from application of RS51, that is, there are 1 < j, k < i such that φk =
¬(φj ∧¬φi). By inductive hypothesis ⊩Dp

2
π(φj) and ⊩Dp

2
π(¬(φj ∧¬φi)),

i.e., ⊩Dp
2

(¬(π(φj) ∧ ¬π(φi))), but by Ax17 ⊩Dp
2
π(φj) →w

d π(φi), so
the required formula follows by (MPw

d ). The case of RS52 is a direct
consequence of the application of Ax16 and (MPw

d ).
For the formula Cn+1 we use Lemma 5.3, while Cn+2 is obtained by the

application of (MPw
d ).

The fact that if ⊩Dp
2
A, then A ∈ Dp

2 follows by routine checking.

6. Related work

Arguably, Akama, Abe, and Nakamatsu’s discursive logic is the first para-
complete discussive logic [2] that Jaśkowski’s discussive logic inspires.20

Being based on Nelson’s constructive logic with a strong negation N4 [4, 36]
(the name N4 is due to Wansing [52]), Akama et al. propose CDLSN,
constructive discursive logic with strong negation, where “discursive nega-
tion is defined similar to intuitionistic negation and discursive implication
is defined as material implication using discursive negation [2, p. 395] [. . . ]
CDLSN can be defined in two ways. One is to extend N4 with discursive
negation ¬d. The other is to weaken intuitionistic negation in N4. We
adopt the first approach [. . . ] Intuitionistic negation is not a discursive
negation” [2, p. 398]. Below, we highlight some (dis)similarities between
this and our approaches.

First, Akama et al.’s approach is not standard because it unemploys a
classically-based modal logic: “Most works on discursive logic utilize clas-
sical logic and S5 as a basis. However, we do not think that these are
essential. For instance, an intuitionist hopes to have a discursive system
in a constructive setting” [2, p. 397]. However, they argue that CDLSN
is a discussive logic (see [2, pp. 406–407]). Our motivation is not to set
up a discussive logic by any means. Rather, we would like to show that
non-discussive logics are obtainable if one sticks to the standard approach
for setting up discussive logic on the basis of a classically-based modal

20The below-mentioned exposition of both CDLSN itself and the ideas beyond it
does not claim completeness. The reader is consulted to address [2] for details.
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logic and at the same time employs a certain non-standard interpretation
of discussive connectives. In particular, the non-discussive logics in this
paper are obtained via non-standard interpretations of discussive disjunc-
tion. Alternatively and quite analogously, the non-standard interpretation
of discussive negation as ¬dA =df □¬A, which we briefly outline in Sec-
tion 3 above might be employed to set up non-discussive logic. We do not
get into details here, for it deserves a separate paper.

Second, both logics are similar because no version of the law of excluded
middle is valid. Hence, both of them are paracomplete.21 However, the
invalidity of these versions stems from different reasons. The intuitionistic-
like version, A ∨ ∼A (∼ is the original notation in [2] for the strong nega-
tion), as well as the discussive one, A∨¬dA, have intuitionistic disjunction
and are CDLSN-invalid due to the well-known properties of the given
intuitionistic(-like) negations and disjunction. Our version, A ∨d ¬A, is
quite opposite in a sense that it contains classical negation and discussive
disjunction. And its invalidity is due only to the interpretation of discus-
sive disjunction as A ∨d ¬A =df □A∨¬A, where □A∨¬A is S5-invalid.22

Third, with regard to discussive implications in both logics, one of ours
proves each formula from the classical implicative fragment, which is obvi-
ously not in line with Akama et al.’s intuitionistic-like motivation. Hence,
((A→w

d B) →w
d A) →w

d A is a theorem in our logic only.23 Moreover, being
a theorem in our logic, A→w

d A is not a CDLSN-theorem. Well-known in-
tuitionistically invalid formulae with (both strong and discussive) negations

21Their paracompleteness is in line with the history of logic, where paraconsistency
and paracompleteness often go hand-in-hand. As J.-Y. Béziau puts it: “Paraconsistent
logic and paracomplete logic appear therefore like husband and wife” [9, p. 12].

22The alternative approach which we sketch in Section 3 above is to interpret discus-
sive negation in a non-standard way as ¬d A =df □¬A. It gives us an S5-invalid formula
A ∨ □¬A.

23Let us notice that in general, paracompleteness (when referring to the invalidity of
the law of excluded middle) has not to entail that the implicational-negative part cannot
behave classically (it can be easily justified by considering a similar translation to ours,
where in the case of implication no modality is added). On the other hand, in Dp

2 for
example, the formula (¬p →w

d ¬q) →w
d (q →w

d p) belonging to classical logic expressed

in the implicational-negative language, is not a thesis of Dp
2. It can be invalidated by

using our translations. Indeed, consider the formulas obtained via the translation σ
given in Section 3 and equivalent on the basis of S5 to each of the following formulas:
□(□¬p → ¬q) → (□q → p); □(♢p ∨ ¬q) → (□q → p); (♢p ∨ □¬q) → (□q → p);
((♢p ∧ □q) ∨ (□¬q ∧ □q)) → p. One can easily see that the last formula is not a thesis
of S5, so, (¬p →w

d ¬q) →w
d (q →w

d p) is indeed not a thesis of Dp
2.
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predictably fail in CDLSN, say, ¬d ¬dA→w
d A, while their analogues with

the classical negation, say, ¬¬A →w
d A, are theorems in our logic. On the

other hand, say, A →w
d ¬d ¬dA as well as its analogue with the classical

negation A→w
d ¬¬A are valid in CDLSN and in our logic, respectively. At

last, in [2], the authors define discursive implication as material implication
using discursive negation, i.e., A→w

d B =df ¬dA∨B. Our analogue of this
definition, A →w

d B =df ¬A ∨d B, as well as ¬(A ∧ B) →w
d (¬A ∨d ¬B)

do not hold. Let us recall to the reader that our logic does not employ
any discussive conjunction, for the motivation is not focused on it but on
discussive disjunction.

7. Conclusion

With regard to future topics to study, let us point out two directions. The
former deals with developing the target logic. Following Perzanowski’s idea
(which he introduced in a comment on his translation of Jaśkowski’s paper
[22, p. 59]), Ciuciura [11] considers a quasi-discursive system ND+

2 which
has a discursive negation defined as follows:

• τ(¬dA) = ♢¬τ(A).

One may consider a paracomplete version of ND+
2 with the following

negation:

• σ(¬dA) = □¬σ(A).

As the reviewer kindly drew our attention, it should be clear by looking
at [37, Definition 11] that the three-valued logic I1 [47] is characterized in
a similar manner by considering the translation as follows, where ∼ and
→I are negation and implication of I1:

• σ(∼A) = □¬σ(A),

• σ(A→I B) = □σ(A) → □σ(B).

The paper [37] also makes use of the ‘diamond’ type implication and,
similarly to [11], the ‘diamond-not’ type negation in capturing P1 [46]:

• σ(∼A) = ♢¬σ(A),

• σ(A→I B) = ♢σ(A) → ♢σ(B).
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Yet another similar translation can be found in Kovač’s paper [28]:

• σ(A ∧B) = ♢σ(A) ∧ ♢σ(B),

• σ(A ∨B) = □σ(A) ∨□σ(B),

• σ(A→ B) = ♢σ(A) → □σ(B).

Jaśkowski is known to have rejected a many-valued tabular approach to
D2 with providing (arguably, quite weak) arguments in favour of the modal
approach that has been fruitfully developing for more than six decades
already (and the present paper is another one evidence of it). Nevertheless,
as in the case of D2, it would be interesting to develop the tabular many-
valued approach to Dp

2: in particular, to find out Dp
2-provabiity of (some

of) the formulae that are characteristic of paracomplete reasoning.
The latter direction of future research deals with applications of Dp

2.
Generally, the reader’s brief look at the axioms of Dp

2 acknowledges their
awkwardness: Dp

2 inherits this property from D2. As a result, it is ex-
tremely difficult to implement the current Hilbert-style axiomatization of
Dp

2 in practice, which implies the problem with proof searching. A possi-
ble solution to this problem would be to axiomatize Dp

2 as a Gentzen-style
(sequent-style) or a natural deduction calculus. To the best of the authors’
knowledge, no such calculi have yet been set up in the literature, not even
for D2. We believe that on this path there will be found a solution for the
notoriously difficult problem of independence of the axioms of discussive
logics that is still open even for D2.

On the other hand, let us remind the reader about the passage on
page 36 about Dp

2 modeling a discussion whose debaters are not equal in
the sense in which they are equal in a discussion modeled with D2. Such
modeling, which is an application of the target logic to argumentation
theory, would also stimulate setting up axiomatizations of Dp

2 mentioned
above.

Last, but not least, the present approach could be generalized by using
other (weaker) modal logics as a basis for corresponding systems, similar
to how the minimal variant D0 of D2 is axiomatized with the help of the
deontic normal logic D in [19].

Acknowledgements. We express our gratitude to an anonymous re-
viewer for the insightful feedback on our paper. The QuillBot software
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e-mail: iaroslav.petrukhin@edu.uni.lodz.pl

Vasily Shangin

Lomonosov Moscow State University
Department of Logic
Faculty of Philosophy
Lomonosovsky prospekt 27-4
119192 Moscow, Russia

e-mail: shangin@philos.msu.ru

mailto:mruczek@umk.pl
mailto:iaroslav.petrukhin@edu.uni.lodz.pl
mailto:shangin@philos.msu.ru

	Introduction
	Linear abelian modal logic
	Axiomatizations
	Semantics

	Completeness
	A hypersequent calculus for LK(A)
	Concluding remarks
	Introduction
	On Jaśkowski's discussive logic D2
	Paracomplete versions of D2
	Lewis's intensional implication and disjunction

	Soundness and completeness
	L-counterpart of S5
	L-counterpart of S5 and paracomplete discussive logic

	A modification of axiomatization
	Related work
	Conclusion
	Introduction
	The informal construction
	The cornerstone
	The extension: De Vries algebras
	The criterion of points
	Grzegorczyk points
	Spaces of Whitehead points
	Summary
	Introduction
	Preliminaries
	Main results
	Stabilizers on L-algebras
	Generalization of stabilizers on L-algebras

	Conclusion
	Introduction
	Preliminaries
	L-modules
	Conclusions and future works 



