Beza Lamesgin Derseh
Berhanu Assaye Alaba
Yohannes Gedamu Wondifraw

ON HOMOMORPHISM AND CARTESIAN PRODUCTS OF INTUITIONISTIC FUZZY PMS-SUBALGEBRA OF A PMS-ALGEBRA

Abstract

In this paper, we introduce the notion of intuitionistic fuzzy PMS-subalgebras under homomorphism and Cartesian product and investigate several properties. We study the homomorphic image and inverse image of the intuitionistic fuzzy PMS-subalgebras of a PMS-algebra, which are also intuitionistic fuzzy PMSsubalgebras of a PMS-algebra, and find some other interesting results. Furthermore, we also prove that the Cartesian product of intuitionistic fuzzy PMSsubalgebras is again an intuitionistic fuzzy PMS-subalgebra and characterize it in terms of its level sets. Finally, we consider the strongest intuitionistic fuzzy PMSrelations on an intuitionistic fuzzy set in a PMS-algebra and demonstrate that an intuitionistic fuzzy PMS-relation on an intuitionistic fuzzy set in a PMS-algebra is an intuitionistic fuzzy PMS-subalgebra if and only if the corresponding intuitionistic fuzzy set in a PMS-algebra is an intuitionistic fuzzy PMS-subalgebra of a PMS-algebra.

Keywords: PMS-algebra, intuitionistic fuzzy PMS-subalgebra, homomorphism, cartesian product and strongest intuitionistic fuzzy relation.

2020 Mathematical Subject Classification: 06F35, 08A72, 03B20.

Presented by: Janusz Ciuciura
Received: June 12, 2022
Published online: April 21, 2023
(C) Copyright by Author(s), Lodz 2023
(C) Copyright for this edition by the University of Lodz, Lodz 2023

1. Introduction

In 1965, Zadeh [12] introduced the fundamental concept of a fuzzy set as an extension of the classical set theory for representing uncertainties in a physical world. Following the introduction of a fuzzy set, several researchers undertook a large number of studies on the extension of a fuzzy set. Atanassov [2, 3] investigated an intuitionistic fuzzy set as an extension of a fuzzy set to deal with uncertainties more efficiently in the actual situation. In 2007, Panigrahi and Nanda [5] introduced the idea of an intuitionistic fuzzy relation between any two intuitionistic fuzzy subsets defined in the given universal sets. In 2011, Anitha and Arjunan [1] studied the strongest intuitionistic fuzzy relations on intuitionistic fuzzy ideals of Hemirings and obtained some interesting results. In 2016, Sithar Selvam and Nagalakshmi [8] introduced a new class of algebra called PMS-algebra. Sithar Selvam and Nagalakshmi [7] fuzzified PMS-subalgebras and PMS ideals in PMS-algebra. In the same year, Sithar Selvam and Nagalakshmi [9] also introduced the concept of homomorphism and Cartesian product of fuzzy PMS-algebra and set up some properties. In our earlier paper [4], we introduced the notion of fuzzy PMS-subalgebra in PMS-algebra and studied some of its properties.
In this paper, we discuss the notion of intuitionistic fuzzy PMS-subalgebras under homomorphism and Cartesian product and investigate several properties. Furthermore, we investigate the homomorphic image and the inverse image of the intuitionistic fuzzy PMS-subalgebras of a PMS-algebra and find some results. Finally, we consider the strongest intuitionistic fuzzy PMS-relations on an intuitionistic fuzzy set in a PMS-algebra and demonstrate that an intuitionistic fuzzy PMS-relation on an intuitionistic fuzzy set in a PMS-algebra is an intuitionistic fuzzy PMS-subalgebra if and only if the corresponding intuitionistic fuzzy set in a PMS-algebra is an intuitionistic fuzzy PMS-subalgebra of a PMS-algebra.

2. Preliminaries

In this section, we recall some basic definitions and results that are used in the study of this paper.

Definition 2.1 ([8]). A nonempty set X with a constant 0 and a binary operation ' $*$ ' is called a PMS-algebra if it satisfies the following axioms.

1. $0 * x=x$
2. $(y * x) *(z * x)=z * y$, for all $x, y, z \in X$.

For $x, y \in X$, we define a binary relation \leq by $x \leq y$ if and only if $x * y=0$.
Definition 2.2 ([8]). Let S be a nonempty subset of a PMS-algebra X. Then S is called a PMS-subalgebra of X if $x * y \in S$, for all $x, y \in S$.

Definition 2.3 ($[7,9]$). Let X and Y be any two PMS- algebras. Then a mapping $f: X \rightarrow Y$ is said to be a homomorphism of PMS-algebras if $f(x * y)=f(x) * f(y)$ for all $x, y \in X . f$ is called an epimorphism if it is onto and endomorphism if f is a mapping from a PMS-algebra X to itself.

Note: If f is a homomorphism of PMS-algebra, then $f(0)=0$.
Definition 2.4 ([12]). Let X be a nonempty set. A fuzzy set A in X is characterized by a membership function $\mu_{A}: X \rightarrow[0,1]$, where $\mu_{A}(x)$ represents the degree of membership of x in X.
Definition 2.5 ([7]). A fuzzy set A in a PMS-algebra X is called fuzzy PMS-subalgebra of X if $\mu_{A}(x * y) \geq \min \left\{\mu_{A}(x), \mu_{A}(y)\right\}$, for all $x, y \in X$.
Definition 2.6 ($[2,3]$). An intuitionistic fuzzy subset A in a nonempty set X is an object having the form $A=\left\{\left\langle x, \mu_{A}(x), \nu_{A}(x)\right\rangle \mid x \in X\right\}$, where the functions $\mu_{A}: X \rightarrow[0,1]$ and $\nu_{A}: X \rightarrow[0,1]$ define the degree of membership and the degree of nonmembership respectively and satisfying the condition $0 \leq \mu_{A}(x)+\nu_{A}(x) \leq 1$, for all $x \in X$.

Remark 2.7. Ordinary fuzzy sets over X may be viewed as special intuitionistic fuzzy sets with the nonmembership function $\nu_{A}(x)=1-\mu_{A}(x)$. So each Ordinary fuzzy set may be written as $\left\{\left\langle x, \mu_{A}(x), 1-\mu_{A}(x)\right\rangle \mid x \in X\right\}$ to define an intuitionistic fuzzy set. For the sake of simplicity we write $A=\left(\mu_{A}, \nu_{A}\right)$ for an intuitionistic fuzzy set $A=\left\{\left\langle x, \mu_{A}(x), \nu_{A}(x)\right\rangle \mid x \in X\right\}$.
Definition $2.8([2,3])$. Let A and B be intuitionistic fuzzy subsets of X, where $A=\left\{\left\langle x, \mu_{A}(x), \nu_{A}(x)\right\rangle \mid x \in X\right\}$ and $B=\left\{\left\langle x, \mu_{B}(x), \nu_{B}(x)\right\rangle \mid x \in X\right\}$, then

1. $A \cap B=\left\{\left\langle x, \min \left\{\mu_{A}(x), \mu_{B}(x)\right\}, \max \left\{\nu_{A}(x), \nu_{B}(x)\right\}\right\rangle \mid x \in X\right\}$
2.

$$
\square A=\left\{\left\langle x, \mu_{A}(x), 1-\mu_{A}(x)\right\rangle \mid x \in X\right\}
$$

3. $\diamond A=\left\{\left\langle x, 1-\nu_{A}(x), \nu_{A}(x)\right\rangle \mid x \in X\right\}$

DEfinition 2.9 ([4]). An intuitionistic fuzzy subset $A=\left(\mu_{A}, \nu_{A}\right)$ of a PMS -algebra X is called an intuitionistic fuzzy PMS-subalgebra of X if $\mu_{A}(x *$ $y) \geq \min \left\{\mu_{A}(x), \mu_{A}(y)\right\}$ and $\nu_{A}(x * y) \leq \max \left\{\nu_{A}(x), \nu_{A}(y)\right\}, \forall x, y \in X$

Definition 2.10 ([10]). Let X and Y be any two nonempty sets and f : $X \rightarrow Y$ be a mapping. If $A=\left(\mu_{A}, \nu_{A}\right)$ and $B=\left(\mu_{B}, \nu_{B}\right)$ are intuitionistic fuzzy subsets of X and Y respectively. Then the image of A under f is defined as $f(A)=\left\{\left\langle y, \mu_{f(A)}(y), \nu_{f(A)}(y)\right\rangle \mid y \in Y\right\}$, where

$$
\mu_{f(A)}(y)= \begin{cases}\sup _{x \in f^{-1}(y)} \mu_{A}(x) & \text { if } \quad f^{-1}(y) \neq \emptyset \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
\nu_{f(A)}(y)= \begin{cases}\inf _{x \in f^{-1}(y)} \nu_{A}(x) & \text { if } \quad f^{-1}(y) \neq \emptyset \\ 1 & \text { otherwise }\end{cases}
$$

The inverse image of B under f is denoted by $f^{-1}(B)$ and is defined as

$$
f^{-1}(B)(x)=\left\{\left\langle x, \mu_{f^{-1}(B)}(x), \nu_{f^{-1}(B)}(x)\right\rangle \mid x \in X\right\}
$$

where $\mu_{f^{-1}(B)}(x)=\mu_{B}(f(x))$ and $\nu_{f^{-1}(B)}(x)=\nu_{B}(f(x))$ for all $x \in X$.
Definition 2.11 ([10]). An intuitionistic fuzzy subset A in a nonempty set X with the degree of membership $\mu_{A}: X \rightarrow[0,1]$ and the degree of non membership $\nu_{A}: X \rightarrow[0,1]$ is said to have sup-inf property, if for any subset $T \subseteq X$ there exists $x_{0} \in T$ such that $\mu_{A}\left(x_{0}\right)=\sup _{t \in T} \mu_{A}(t)$ and $\nu_{A}\left(x_{0}\right)=\inf _{t \in T} \mu_{A}(t)$

Definition 2.12. [5, 11] Let $A=\left(\mu_{A}, \nu_{A}\right)$ and $B=\left(\mu_{B}, \nu_{B}\right)$ be any two intuitionistic fuzzy subsets of X and Y respectively. Then the Cartesian product of A and B is defined as

$$
A \times B=\left\{\left\langle(x, y), \mu_{A \times B}(x, y), \nu_{A \times B}(x, y)\right\rangle \mid x \in X, y \in Y\right\}
$$

where $\mu_{A \times B}(x, y)=\min \left\{\mu_{A}(x), \mu_{B}(y)\right\}$ and $\nu_{A \times B}(x, y)=\max \left\{\left(\nu_{A}(x)\right.\right.$, $\left.\left.\nu_{B}(x)\right)\right\}$ such that $\mu_{A \times B}: X \times Y \rightarrow[0,1]$ and $\nu_{A \times B}: X \times Y \rightarrow[0,1]$, for all $x \in X$ and $y \in Y$.

Remark 2.13. Let X and Y be PMS-algebras, for all $(x, y),(u, v) \in X \times Y$, we define ' $*$ ' on $X \times Y$ by $(x, y) *(u, v)=(x * u, y * v)$. Clearly $(X \times Y ; *,(0,0))$ is a PMS-algebra.

Definition 2.14. [5] A fuzzy relation A on a nonempty set X is a fuzzy set A with a membership function $\mu_{A}: X \times X \rightarrow[0,1]$.

Definition 2.15. [6,5] An intuitionistic fuzzy relation R on a non empty set X is an expression of the form $R=\left\{\left\langle(x, y), \mu_{R}(x, y), \nu_{R}(x, y)\right\rangle \mid x, y \in\right.$ $X\}$ where $\mu_{R}: X \times X \rightarrow[0,1]$ and $\nu_{R}: X \times X \rightarrow[0,1]$ satisfy the condition $0 \leq \mu_{R}(x, y)+\nu_{R}(x, y) \leq 1$ for every $(x, y) \in X \times X$.

Definition $2.16([1,6,5])$. Let $A=\left(\mu_{A}, \nu_{A}\right)$ be an intuitionistic fuzzy set on a set X and $R=\left(\mu_{R}, \nu_{R}\right)$ is an intuitionistic fuzzy relation on a set X. Then the strongest intuitionistic fuzzy relation R_{A} on X , that is, an intuitionistic fuzzy relation R on A whose membership function $\mu_{R_{A}}: X \times X \rightarrow$ $[0,1]$ and whose nonmembership function $\nu_{R_{A}}: X \times X \rightarrow[0,1]$ are given by $\mu_{R_{A}}(x, y)=\min \left\{\mu_{A}(x), \mu_{A}(y)\right\}$ and $\nu_{R_{A}}(x, y)=\max \left\{\nu_{A}(x), \nu_{A}(y)\right\}$.

3. Homomorphism on intuitionistic Fuzzy PMS-subalgebras

In this section, we discuss on intuitionistic fuzzy PMS-subalgebras in a PMS-algebra under homomorphism. The homomorphic image and inverse image of intuitionistic fuzzy PMS-subalgebras of a PMS-algebra, as well as other results, are examined. Unless otherwise stated, X and Y refer to a PMS-algebra throughout this and the following section.

Theorem 3.1. Let $f: X \rightarrow Y$ be an epimorphism of PMS-algebras. If $A=\left(\mu_{A}, \nu_{A}\right)$ is an intuitionistic fuzzy PMS-subalgebra of X with sup-inf property, then $f(A)$ is an intuitionistic fuzzy PMS-subalgebra of Y.

Proof: Let $A=\left(\mu_{A}, \nu_{A}\right)$ be an intuitionistic fuzzy PMS-subalgebra of X and let $a, b \in Y$ with $x_{0} \in f^{-1}(a)$ and $y_{0} \in f^{-1}(b)$ such that

$$
\begin{aligned}
& \mu_{A}\left(x_{0}\right)=\sup _{x \in f^{-1}(a)} \mu_{A}(x), \mu_{A}\left(y_{0}\right)=\sup _{x \in f^{-1}(b)} \mu_{A}(x) \\
& \nu_{A}\left(x_{0}\right)=\inf _{x \in f^{-1}(a)} \nu_{A}(x), \nu_{A}\left(y_{0}\right)=\inf _{x \in f^{-1}(b)} \nu_{A}(x)
\end{aligned}
$$

then by Definition 2.10 and 2.11 we have

$$
\begin{aligned}
\mu_{f(A)}(a * b)=\sup _{x \in f^{-1}(a * b)} \mu_{A}(x) & =\mu_{A}\left(x_{0} * y_{0}\right) \\
& \geq \min \left\{\mu_{A}\left(x_{0}\right), \mu_{A}\left(y_{0}\right)\right\} \\
& =\min \left\{\sup _{x \in f^{-1}(a)} \mu_{A}(x), \sup _{x \in f^{-1}(b)} \mu_{A}(x)\right\} \\
& =\min \left\{\mu_{f(A)}(a), \mu_{f(A)}(b)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\nu_{f(A)}(a * b)=\inf _{x \in f^{-1}(a * b)} \nu_{A}(x) & =\nu_{A}\left(x_{0} * y_{0}\right) \\
& \leq \max \left\{\nu_{A}\left(x_{0}\right), \nu_{A}\left(y_{0}\right)\right\} \\
& =\max \left\{\inf _{x \in f^{-1}(b)} \nu_{A}(x), \inf _{x \in f^{-1}(b)} \nu_{A}(x)\right\} \\
& =\max \left\{\nu_{f(A)}(a), \nu_{f(A)}(b)\right\}
\end{aligned}
$$

Hence $f(A)$ is an intuitionistic fuzzy PMS-subalgebra of Y.
Theorem 3.2. Let $f: X \rightarrow Y$ be a homomorphism of PMS-algebras. If $B=\left(\mu_{B}, \nu_{B}\right)$ is an intuitionistic fuzzy PMS-subalgebra of Y, then $f^{-1}(B)$ is an intuitionistic fuzzy PMS-subalgebra of X.

Proof: Assume that $B=\left(\mu_{B}, \nu_{B}\right)$ is an intuitionistic fuzzy PMS-subalgebra of Y and let $x, y \in X$. Then,

$$
\begin{aligned}
\mu_{f^{-1}(B)}(x * y)=\mu_{B}(f(x * y)) & =\mu_{B}(f(x) * f(y)) \\
& \geq \min \left\{\mu_{B}(f(x)), \mu_{B}(f(y))\right\} \\
& =\min \left\{\mu_{f^{-1}(B)}(x), \mu_{f^{-1}(B)}(y)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\nu_{f^{-1}(B)}(x * y)=\nu_{B}(f(x * y)) & =\nu_{B}(f(x) * f(y)) \\
& \leq \max \left\{\nu_{B}(f(x)), \nu_{B}(f(y))\right\} \\
& =\max \left\{\nu_{f-1}(B)(x), \nu_{f-1}(B)(y)\right\}
\end{aligned}
$$

Therefore $f^{-1}(B)$ is an intuitionistic fuzzy PMS-subalgebra of X.

The Converse of the above theorem is true if f is a PMS-epimorphism.
Theorem 3.3. Let $f: X \rightarrow Y$ be an epimorphism of PMS-algebras and $B=\left(\mu_{B}, \nu_{B}\right)$ is a fuzzy set in Y. If $f^{-1}(B)$ is an intuitionistic fuzzy PMS-subalgebra of X, then $B=\left(\mu_{B}, \nu_{B}\right)$ is an intuitionistic fuzzy PMSsubalgebra of Y.

Proof: Assume that f is an epimorphism of PMS-algebras and $f^{-1}(B)$ is an intuitionistic fuzzy PMS-subalgebra of X. Let $y_{1}, y_{2} \in Y$. Since f is an epimorphism of PMS-algebras, there exist $x_{1}, x_{2} \in X$ such that $f\left(x_{1}\right)=y_{1}$ and $f\left(x_{2}\right)=y_{2}$. Now,

$$
\begin{aligned}
\mu_{B}\left(y_{1} * y_{2}\right) & =\mu_{B}\left(f\left(x_{1}\right) * f\left(x_{2}\right)\right. \\
& =\mu_{B}\left(f\left(x_{1} * x_{2}\right)\right) \\
& =\mu_{f-1}(B)\left(x_{1} * x_{2}\right) \\
& \geq \min \left\{\mu_{f-1}(B)\left(x_{1}\right), \mu_{f^{-1}(B)}\left(x_{2}\right)\right\} \\
& =\min \left\{\mu_{B}\left(f\left(x_{1}\right)\right), \mu_{B}\left(f\left(x_{2}\right)\right)\right\} \\
& =\min \left\{\mu_{B}\left(y_{1}\right), \mu_{B}\left(y_{2}\right)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\nu_{B}\left(y_{1} * y_{2}\right) & =\nu_{B}\left(f\left(x_{1}\right) * f\left(x_{2}\right)\right. \\
& =\nu_{B}\left(f\left(x_{1} * x_{2}\right)\right) \\
& =\nu_{f-1}(B)\left(x_{1} * x_{2}\right) \\
& \leq \max \left\{\nu_{f^{-1}(B)}\left(x_{1}\right), \nu_{f-1}(B)\left(x_{2}\right)\right\} \\
& =\max \left\{\nu_{B}\left(f\left(x_{1}\right)\right), \nu_{B}\left(f\left(x_{2}\right)\right)\right\} \\
& =\max \left\{\nu_{B}\left(y_{1}\right), \nu_{B}\left(y_{2}\right)\right\}
\end{aligned}
$$

Hence $B=\left(\mu_{B}, \nu_{B}\right)$ is an intuitionistic fuzzy PMS-Subalgebra of Y.
Definition 3.4. Let $f: X \rightarrow Y$ be a homomorphism of PMS-algebras for any intuitionistic fuzzy set $A=\left(\mu_{A}, \nu_{A}\right)$ in Y. We define an intuitionistic fuzzy set $A^{f}=\left(\mu_{A}^{f}, \nu_{A}^{f}\right)$ in X by $\mu_{A}^{f}(x)=\mu_{A}(f(x))$ and $\nu_{A}^{f}(x)=\nu_{A}(f(x)), \forall x \in X$.

In the next two theorems we characterize an intuitionistic fuzzy PMSsubalgebra of a PMS-algebra using an intuitionistic fuzzy set defined above in Definition 3.4.

Theorem 3.5. Let $f: X \rightarrow Y$ be a homomorphism of PMS-algebras. If the intuitionistic fuzzy set $A=\left(\mu_{A}, \nu_{A}\right)$ is an intuitionistic fuzzy PMSsubalgebra of Y, then the intuitionistic fuzzy set $A^{f}=\left(\mu_{A}^{f}, \nu_{A}^{f}\right)$ in X is an intuitionistic fuzzy PMS-subalgebra of X.

Proof: Let f be a homomorphism of PMS-algebras and let $A=\left(\mu_{A}, \nu_{A}\right)$ be an intuitionistic fuzzy PMS-subalgebra of Y. Let $x, y \in X$. Then

$$
\begin{aligned}
\mu_{A}^{f}(x * y)=\mu_{A}(f(x * y)) & =\mu_{A}(f(x) * f(y)) \\
& \geq \min \left\{\mu_{A}(f(x)), \mu_{A}(f(y))\right\} \\
& =\min \left\{\mu_{A}^{f}(x), \mu_{A}^{f}(y)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\nu_{A}^{f}(x * y)=\nu_{A}(f(x * y)) & =\nu_{A}(f(x) * f(y)) \\
& \leq \max \left\{\nu_{A}(f(x)), \nu_{A}(f(y))\right\} \\
& =\max \left\{\nu_{A}^{f}(x), \nu_{A}^{f}(y)\right\}
\end{aligned}
$$

Hence $A^{f}=\left(\mu_{A}^{f}, \nu_{A}^{f}\right)$ is an intuitionistic fuzzy PMS-subalgebra of X.
The Converse of Theorem 3.5 is also true if f is an epimorphism of PMS-algebras as shown below in Theorem 3.6

Theorem 3.6. Let $f: X \rightarrow Y$ be an epimorphism of PMS-algebra. If $A^{f}=\left(\mu_{A}^{f}, \nu_{A}^{f}\right)$ is an intuitionistic fuzzy PMS-subalgebra of X, then $A=$ $\left(\mu_{A}, \nu_{A}\right)$ is an intuitionistic fuzzy PMS-subalgebra of Y.
Proof: Let $A^{f}=\left(\mu_{A}^{f}, \nu_{A}^{f}\right)$ be an intuitionistic fuzzy PMS-subalgebra in X and let $x, y \in Y$. Then there exist $a, b \in X$ such that $f(a)=x$ and $f(b)=y$. Now we have,

$$
\begin{aligned}
\mu_{A}(x * y) & =\mu_{A}(f(a) * f(b)) \\
& =\mu_{A}(f(a * b)) \\
& =\mu_{A}^{f}(a * b) \\
& \geq \min \left\{\mu_{A}^{f}(a), \mu_{A}^{f}(b)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\min \left\{\mu_{A}(f(a)), \mu_{A}(f(b))\right\} \\
& =\min \left\{\mu_{A}(x), \mu_{A}(y)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\nu_{A}(x * y) & =\nu_{A}(f(a) * f(b)) \\
& =\nu_{A}(f(a * b)) \\
& =\nu_{A}^{f}(a * b) \\
& \leq \max \left\{\nu_{A}^{f}(a), \nu_{A}^{f}(b)\right\} \\
& =\max \left\{\nu_{A}(f(a)), \nu_{A}(f(b))\right\} \\
& =\max \left\{\nu_{A}(x), \nu_{A}(y)\right\}
\end{aligned}
$$

Hence $A=\left(\mu_{A}, \nu_{A}\right)$ is an intuitionistic fuzzy PMS-subalgebra of Y.

As a consequence of Theorems 3.5 and 3.6 we obtain the next theorem.
Theorem 3.7. Let $f: X \rightarrow Y$ be an epimorphism of PMS-algebra. Then $A^{f}=\left(\mu_{A}^{f}, \nu_{A}^{f}\right)$ is an intuitionistic fuzzy PMS-subalgebra of X if and only if $A=\left(\mu_{A}, \nu_{A}\right)$ is an intuitionistic fuzzy PMS-subalgebra of Y.

4. Cartesian Product of Intuitionistic Fuzzy PMS-subalgebras

In this section, we discuss the concept of Cartesian product and the strongest fuzzy relation on intuitionistic fuzzy PMS-algebras. We prove that the Cartesian product of two intuitionistic fuzzy PMS-subalgebras is again an intuitionistic fuzzy PMS-subalgebra and some other results are also investigated.

Lemma 4.1. Let $A=\left(\mu_{A}, \nu_{A}\right)$ and $B=\left(\mu_{B}, \nu_{B}\right)$ be any two intuitionistic fuzzy $P M S$-subalgebras of X and Y respectively. Then

$$
\mu_{A \times B}(0,0) \geq \mu_{A \times B}(x, y)
$$

and

$$
\nu_{A \times B}(0,0) \leq \nu_{A \times B}(x, y), \forall(x, y) \in X \times Y
$$

Proof: Let $(x, y) \in X \times Y$. Then
$\mu_{A \times B}(0,0)=\min \left\{\mu_{A}(0), \mu_{B}(0)\right\} \geq \min \left\{\mu_{A}(x), \mu_{B}(y)\right\}=\mu_{A \times B}(x, y)$ and $\nu_{A \times B}(0,0)=\max \left\{\nu_{A}(0), \nu_{B}(0)\right\} \leq \max \left\{\nu_{A}(x), \nu_{B}(y)\right\}=\nu_{A \times B}(x, y)$

Theorem 4.2. Let $A=\left(\mu_{A}, \nu_{A}\right)$ and $B=\left(\mu_{B}, \nu_{B}\right)$ be any two intuitionistic fuzzy $P M S$-subalgebras of X and Y respectively. Then $A \times B$ is an intuitionistic fuzzy PMS-subalgebra of $X \times Y$.
Proof: Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X \times Y$. Then

$$
\begin{aligned}
\mu_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right) & =\mu_{A \times B}\left(x_{1} * x_{2}, y_{1} * y_{2}\right) \\
& =\min \left\{\mu_{A}\left(x_{1} * x_{2}\right), \mu_{B}\left(y_{1} * y_{2}\right)\right\} \\
& \geq \min \left\{\min \left\{\mu_{A}\left(x_{1}\right), \mu_{A}\left(x_{2}\right)\right\}, \min \left\{\mu_{B}\left(y_{1}\right), \mu_{B}\left(y_{2}\right)\right\}\right\} \\
& =\min \left\{\min \left\{\mu_{A}\left(x_{1}\right), \mu_{B}\left(y_{1}\right)\right\}, \min \left\{\mu_{A}\left(x_{2}\right), \mu_{B}\left(y_{2}\right)\right\}\right\} \\
& =\min \left\{\mu_{A \times B}\left(x_{1}, y_{1}\right), \mu_{A \times B}\left(x_{2}, y_{2}\right)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\nu_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right) & =\nu_{A \times B}\left(x_{1} * x_{2}, y_{1} * y_{2}\right) \\
& =\max \left\{\nu_{A}\left(x_{1} * x_{2}\right), \nu_{B}\left(y_{1} * y_{2}\right)\right\} \\
& \leq \max \left\{\max \left\{\nu_{A}\left(x_{1}\right), \nu_{A}\left(x_{2}\right)\right\}, \max \left\{\nu_{B}\left(y_{1}\right), \nu_{B}\left(y_{2}\right)\right\}\right\} \\
& =\max \left\{\max \left\{\nu_{A}\left(x_{1}\right), \nu_{B}\left(y_{1}\right)\right\}, \max \left\{\nu_{A}\left(x_{2}\right), \nu_{B}\left(y_{2}\right)\right\}\right\} \\
& =\max \left\{\nu_{A \times B}\left(x_{1}, y_{1}\right), \nu_{A \times B}\left(x_{2}, y_{2}\right)\right\}
\end{aligned}
$$

Hence $A \times B$ is an intuitionistic fuzzy PMS-subalgebra of $X \times Y$.
TheOrem 4.3. Let A and B be intuitionistic fuzzy subsets of the PMSalgebras X and Y respectively. Suppose that 0 and 0^{\prime} are the constant elements of X and Y respectively. If $A \times B$ is an intuitionistic fuzzy PMSsubalgebras of $X \times Y$, then at least one of the following two statements holds.
(i) $\mu_{A}(x) \leq \mu_{B}\left(0^{\prime}\right)$ and $\nu_{A}(x) \geq \nu_{B}\left(0^{\prime}\right)$, for all $x \in X$,
(ii) $\mu_{B}(y) \leq \mu_{A}(0)$ and $\nu_{B}(y) \geq \nu_{A}(0)$, for all $y \in Y$.

Proof: Let $A \times B$ be an intuitionistic fuzzy PMS-subalgebra of $X \times Y$. Suppose that none of the statements (i) and $(i i)$ holds. Then we can
find $x \in X$ and $y \in Y$ such that $\mu_{A}(x)>\mu_{B}\left(0^{\prime}\right), \nu_{A}(x)<\nu_{B}\left(0^{\prime}\right)$ and $\mu_{B}(y)>\mu_{A}(0), \nu_{B}(y)<\nu_{A}(0)$. Then we have

$$
\mu_{A \times B}(x, y)=\min \left\{\mu_{A}(x), \mu_{B}(y)\right\}>\min \left\{\mu_{B}\left(0^{\prime}\right), \mu_{A}(0)\right\}=\mu_{A \times B}\left(0,0^{\prime}\right)
$$

and

$$
\nu_{A \times B}(x, y)=\max \left\{\nu_{A}(x), \nu_{B}(y)\right\}<\max \left\{\nu_{B}\left(0^{\prime}\right), \nu_{A}(0)\right\}=\nu_{A \times B}\left(0,0^{\prime}\right)
$$

which leads to

$$
\mu_{A \times B}(x, y)>\mu_{A \times B}\left(0,0^{\prime}\right) \text { and } \nu_{A \times B}(x, y)<\nu_{A \times B}\left(0,0^{\prime}\right) .
$$

This contradicts Lemma 4.1. Hence, either (i) or (ii) holds
Theorem 4.4. Let A and B be intuitionistic fuzzy subsets of $P M S$-algebras X and Y respectively such that $\mu_{A}(x) \leq \mu_{B}\left(0^{\prime}\right)$ and $\nu_{A}(x) \geq \nu_{B}\left(0^{\prime}\right)$ for all $x \in X$, where 0^{\prime} is a constant in Y. If $A \times B$ is an intuitionistic fuzzy PMS-subalgebra of $X \times Y$, then A is an intuitionistic fuzzy PMS-subalgebra of X.

Proof: Let $x, y \in X$. Then $\left(x, 0^{\prime}\right),\left(y, 0^{\prime}\right) \in X \times Y$. Since $\mu_{A}(x) \leq \mu_{B}\left(0^{\prime}\right)$ and $\nu_{A}(x) \geq \nu_{B}\left(0^{\prime}\right)$ for all $x \in X$, then for all $x, y \in X$ we get,

$$
\begin{aligned}
\mu_{A}(x * y) & =\min \left\{\mu_{A}(x * y), \mu_{B}\left(0^{\prime} * 0^{\prime}\right)\right\} \\
& =\mu_{A \times B}\left(x * y, 0^{\prime} * 0^{\prime}\right) \\
& =\mu_{A \times B}\left(\left(x, 0^{\prime}\right) *\left(y, 0^{\prime}\right)\right) \\
& \geq \min \left\{\mu_{A \times B}\left(x, 0^{\prime}\right), \mu_{A \times B}\left(y, 0^{\prime}\right)\right\} \\
& =\min \left\{\min \left\{\mu_{A}(x), \mu_{B}\left(0^{\prime}\right)\right\}, \min \left\{\mu_{A}(y), \mu_{B}\left(0^{\prime}\right)\right\}\right\} \\
& =\min \left\{\mu_{A}(x), \mu_{A}(y)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\nu_{A}(x * y) & =\max \left\{\nu_{A}(x * y), \nu_{B}\left(0^{\prime} * 0^{\prime}\right)\right\} \\
& =\nu_{A \times B}\left(x * y, 0^{\prime} * 0^{\prime}\right) \\
& =\nu_{A \times B}\left(\left(x, 0^{\prime}\right) *\left(y, 0^{\prime}\right)\right) \\
& \leq \max \left\{\nu_{A \times B}\left(x, 0^{\prime}\right), \nu_{A \times B}\left(y, 0^{\prime}\right)\right\} \\
& =\max \left\{\max \left\{\nu_{A}(x), \nu_{B}\left(0^{\prime}\right)\right\}, \max \left\{\nu_{A}(y), \nu_{B}\left(0^{\prime}\right)\right\}\right\} \\
& =\max \left\{\nu_{A}(x), \nu_{A}(y)\right\}
\end{aligned}
$$

Hence $\mu_{A}(x * y) \geq \min \left\{\mu_{A}(x), \mu_{A}(y)\right\}$ and $\nu_{A}(x * y) \leq \max \left\{\nu_{A}(x), \nu_{A}(y)\right\}$ Therefore A is an intuitionistic fuzzy PMS-subalgebra of X.

THEOREM 4.5. Let A and B be intuitionistic fuzzy subsets of PMS-algebras X and Y respectively such that $\mu_{B}(y) \leq \mu_{A}(0)$ and $\nu_{B}(y) \geq \nu_{A}(0)$ for all $y \in Y$, where 0 is a constant in X. If $A \times B$ is an intuitionistic fuzzy PMS-subalgebra of $X \times Y$, then B is an intuitionistic fuzzy PMS-subalgebra of Y.

Proof: Let $x, y \in Y$. Then $(0, x),(0, y) \in X \times Y$. Since $\mu_{B}(y) \leq \mu_{A}(0)$ and $\nu_{B}(y) \geq \nu_{A}(0)$ for all $y \in Y$, then for all $x, y \in Y$ we get,

$$
\begin{aligned}
\mu_{B}(x * y) & =\min \left\{\mu_{A}(0 * 0), \mu_{B}(x * y)\right\} \\
& =\mu_{A \times B}(0 * 0, x * y) \\
& =\mu_{A \times B}((0, x) *(0, y)) \\
& \geq \min \left\{\mu_{A \times B}(0, x), \mu_{A \times B}(0, y)\right\} \\
& =\min \left\{\min \left\{\mu_{A}(0), \mu_{B}(x)\right\}, \min \left\{\mu_{A}(0), \mu_{B}(y)\right\}\right\} \\
& =\min \left\{\mu_{B}(x), \mu_{B}(y)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\nu_{B}(x * y) & =\max \left\{\nu_{A}(0 * 0), \nu_{B}(x * y)\right\} \\
& =\nu_{A \times B}(0 * 0, x * y) \\
& =\nu_{A \times B}((0, x) *(0, y)) \\
& \leq \max \left\{\nu_{A \times B}(0, x), \nu_{A \times B}(0, y)\right\} \\
& =\max \left\{\max \left\{\nu_{A}(0), \nu_{B}(x)\right\}, \max \left\{\nu_{A}(0), \nu_{B}(y)\right\}\right\} \\
& =\max \left\{\nu_{B}(x), \nu_{B}(y)\right\}
\end{aligned}
$$

Hence $\mu_{B}(x * y) \geq \min \left\{\mu_{B}(x), \mu_{B}(y)\right\}$ and $\nu_{B}(x * y) \leq \max \left\{\nu_{B}(x), \nu_{B}(y)\right\}$

Therefore B is an intuitionistic fuzzy PMS-subalgebra of Y.

From Theorems 4.3, 4.4 and 4.5, we have the following:

Corollary 4.6. Let A and B be intuitionistic fuzzy subsets of PMSalgebras X and Y respectively. If $A \times B$ is an intuitionistic fuzzy PMSsubalgebra of $X \times Y$, then either A is an intuitionistic fuzzy PMS-subalgebra of X or B is an intuitionistic fuzzy PMS-subalgebra of Y.
Proof: Since $A \times B$ is an intuitionistic fuzzy PMS-subalgebra of $X \times Y$,

$$
\begin{align*}
\mu_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right) & \geq \min \left\{\mu_{A \times B}\left(x_{1}, y_{1}\right), \mu_{A \times B}\left(x_{2}, y_{2}\right)\right\} \tag{4.1}\\
\nu_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right) & \leq \max \left\{\nu_{A \times B}\left(x_{1}, y_{1}\right), \nu_{A \times B}\left(x_{2}, y_{2}\right)\right\} \tag{4.2}
\end{align*}
$$

If we put $x_{1}=0=x_{2}$ in (4.1), we get

$$
\begin{aligned}
& \mu_{A \times B}\left(\left(0, y_{1}\right) *\left(0, y_{2}\right)\right) \geq \min \left\{\mu_{A \times B}\left(0, y_{1}\right), \mu_{A \times B}\left(0, y_{2}\right)\right\} \\
\Rightarrow & \mu_{A \times B}\left(0 * 0, y_{1} * y_{2}\right) \geq \min \left\{\mu_{A \times B}\left(0, y_{1}\right), \mu_{A \times B}\left(0, y_{2}\right)\right\} \\
\Rightarrow & \mu_{A \times B}\left(0, y_{1} * y_{2}\right) \geq \min \left\{\mu_{A \times B}\left(0, y_{1}\right), \mu_{A \times B}\left(0, y_{2}\right)\right\} \\
\Rightarrow & \min \left\{\mu_{A}(0), \mu_{B}\left(y_{1} * y_{2}\right)\right\} \geq \min \left\{\min \left\{\mu_{A}(0), \mu_{B}\left(y_{1}\right)\right\}, \min \left\{\mu_{A}(0), \mu_{B}\left(y_{2}\right)\right\}\right\}
\end{aligned}
$$

Hence, $\mu_{B}\left(y_{1} * y_{2}\right) \geq \min \left\{\mu_{B}\left(y_{1}\right), \mu_{B}\left(y_{2}\right)\right\}$. Also, if we put $x_{1}=0=x_{2}$ in (4.2), we get

$$
\begin{aligned}
& \nu_{A \times B}\left(\left(0, y_{1}\right) *\left(0, y_{2}\right)\right) \leq \max \left\{\nu_{A \times B}\left(0, y_{1}\right), \nu_{A \times B}\left(0, y_{2}\right)\right\} \\
\Rightarrow & \nu_{A \times B}\left(0 * 0, y_{1} * y_{2}\right) \leq \max \left\{\nu_{A \times B}\left(0, y_{1}\right), \nu_{A \times B}\left(0, y_{2}\right)\right\} \\
\Rightarrow & \nu_{A \times B}\left(0, y_{1} * y_{2}\right) \leq \max \left\{\nu_{A \times B}\left(0, y_{1}\right), \nu_{A \times B}\left(0, y_{2}\right)\right\} \\
\Rightarrow & \max \left\{\nu_{A}(0), \nu_{B}\left(y_{1} * y_{2}\right)\right\} \leq \max \left\{\max \left\{\nu_{A}(0), \nu_{B}\left(y_{1}\right)\right\}, \max \left\{\nu_{A}(0), \nu_{B}\left(y_{2}\right)\right\}\right\}
\end{aligned}
$$

Hence $\nu_{B}\left(y_{1} * y_{2}\right) \leq \max \left\{\nu_{B}\left(y_{1}\right), \nu_{B}\left(y_{2}\right)\right\}$ and B is an intuitionistic fuzzy PMS-subalgebra of Y.

Similarly, we prove that A is an intuitionistic fuzzy PMS-subalgebra of X by putting $y_{1}=0=y_{2}$ in (4.1) and (4.2).
Theorem 4.7. Let A and B be any intuitionistic fuzzy subsets of X and Y respectively. Then $A \times B$ is an intuitionistic fuzzy PMS-subalgebra of $X \times Y$ if and only if $\mu_{A \times B}$ and $\bar{\nu}_{A \times B}$ are fuzzy PMS-subalgebra of $X \times Y$, where $\bar{\nu}_{A \times B}$ is the complement of $\nu_{A \times B}$.
Proof: Let $A \times B$ be an intuitionistic fuzzy PMS-subalgebra of $X \times Y$. Then by Definition $2.9 \mu_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right) \geq \min \left\{\mu_{A \times B}\left(x_{1}, y_{1}\right)\right.$, $\left.\mu_{A \times B}\left(x_{2}, y_{2}\right)\right\}$ and $\nu_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right) \leq \max \left\{\nu_{A \times B}\left(x_{1}, y_{1}\right)\right.$, $\left.\nu_{A \times B}\left(x_{2}, y_{2}\right)\right\}, \forall\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X \times Y$. Hence $\mu_{A \times B}$ is a fuzzy PMSsubalgebra of $X \times Y$ by Definition 2.5. Now for all $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X \times Y$.

$$
\begin{aligned}
\bar{\nu}_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right) & =1-\nu_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right) \\
& \geq 1-\max \left\{\nu_{A \times B}\left(x_{1}, y_{1}\right), \nu_{A \times B}\left(x_{2}, y_{2}\right)\right\} \\
& =\min \left\{1-\nu_{A \times B}\left(x_{1}, y_{1}\right), 1-\nu_{A \times B}\left(x_{2}, y_{2}\right)\right\} \\
& =\min \left\{\bar{\nu}_{A \times B}\left(x_{1}, y_{1}\right), \bar{\nu}_{A \times B}\left(x_{2}, y_{2}\right)\right\}
\end{aligned}
$$

Hence $\bar{\nu}_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right) \geq \min \left\{\bar{\nu}_{A \times B}\left(x_{1}, y_{1}\right), \bar{\nu}_{A \times B}\left(x_{2}, y_{2}\right)\right\}$
Thus, $\bar{\nu}_{A \times B}$ is a fuzzy PMS-subalgebra of $X \times Y$.
Conversely, assume $\mu_{A \times B}$ and $\bar{\nu}_{A \times B}$ are fuzzy PMS-subalgebra of $X \times Y$. Then we have that $\mu_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right) \geq \min \left\{\mu_{A \times B}\left(x_{1}, y_{1}\right)\right.$, $\left.\mu_{A \times B}\left(x_{2}, y_{2}\right)\right\} \quad$ and $\quad \bar{\nu}_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right) \geq \min \left\{\bar{\nu}_{A \times B}\left(x_{1}, y_{1}\right)\right.$, $\left.\bar{\nu}_{A \times B}\left(x_{2}, y_{2}\right)\right\}$ for all $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X \times Y$. So we need to show that $\nu_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right) \leq \max \left\{\nu_{A \times B}\left(x_{1}, y_{1}\right), \nu_{A \times B}\left(x_{2}, y_{2}\right)\right\}$ for all $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X \times Y$.

Now,

$$
\begin{aligned}
1-\nu_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right. & =\bar{\nu}_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right) \\
& \geq \min \left\{\bar{\nu}_{A \times B}\left(x_{1}, y_{1}\right), \bar{\nu}_{A \times B}\left(x_{2}, y_{2}\right)\right\} \\
& =\min \left\{1-\nu_{A \times B}\left(x_{1}, y_{1}\right), 1-\nu_{A \times B}\left(x_{2}, y_{2}\right)\right\} \\
& =1-\max \left\{\nu_{A \times B}\left(x_{1}, y_{1}\right), \nu_{A \times B}\left(x_{2}, y_{2}\right)\right\},
\end{aligned}
$$

and so $\nu_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right) \leq \max \left\{\nu_{A \times B}\left(x_{1}, y_{1}\right), \nu_{A \times B}\left(x_{2}, y_{2}\right)\right\}\right.$. Hence $A \times B$ is an intuitionistic fuzzy PMS-subalgebra of $X \times Y$.
THEOREM 4.8. Let A and B be any intuitionistic fuzzy subsets of X and Y respectively, then $A \times B$ is an intuitionistic fuzzy PMS-subalgebra of $X \times Y$ if and only if $\square(A \times B)$ and $\diamond(A \times B)$ are intuitionistic fuzzy PMS-subalgebra of $X \times Y$

Proof: Suppose $A \times B$ is an intuitionistic fuzzy PMS-subalgebra of $X \times Y$. Then $\mu_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right) \geq \min \left\{\mu_{A \times B}\left(x_{1}, y_{1}\right), \mu_{A \times B}\left(x_{2}, y_{2}\right)\right\}\right.$ and $\nu_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right) \leq \max \left\{\nu_{A \times B}\left(x_{1}, y_{1}\right), \nu_{A \times B}\left(x_{2}, y_{2}\right)\right\}\right.$, for all $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X \times Y$
(i) To prove $\square(A \times B)$ is an intuitionistic fuzzy PMS-subalgebra of $X \times Y$, it suffices to show that for $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X \times Y, \bar{\mu}_{A \times B}\left(\left(x_{1}, y_{1}\right) *\right.$ $\left(x_{2}, y_{2}\right) \leq \min \left\{\bar{\mu}_{A \times B}\left(x_{1}, y_{1}\right), \bar{\mu}_{A \times B}\left(x_{2}, y_{2}\right)\right\}$. Now let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ $\in X \times Y$

$$
\begin{aligned}
\bar{\mu}_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right) & =1-\mu_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right) \\
& \leq 1-\min \left\{\mu_{A \times B}\left(x_{1}, y_{1}\right), \mu_{A \times B}\left(x_{2}, y_{2}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\max \left\{1-\mu_{A \times B}\left(\left(x_{1}, y_{1}\right), 1-\mu_{A \times B}\left(x_{2}, y_{2}\right)\right)\right\} \\
& =\max \left\{\bar{\mu}_{A \times B}\left(\left(x_{1}, y_{1}\right), \bar{\mu}_{A \times B}\left(x_{2}, y_{2}\right)\right)\right\},
\end{aligned}
$$

whence $\bar{\mu}_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right) \leq \max \left\{\bar{\mu}_{A \times B}\left(x_{1}, y_{1}\right), \bar{\mu}_{A \times B}\left(x_{2}, y_{2}\right)\right\}$ follows. Hence $\square(A \times B)$ is an intuitionistic fuzzy PMS-subalgebra of $X \times Y$.
(ii) To prove $\diamond(A \times B)$ is an intuitionistic fuzzy PMS-subalgebra of $X \times Y$, it suffices to show that $\bar{\nu}_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right) \geq \min \left\{\bar{\nu}_{A \times B}\left(x_{1}, y_{1}\right)\right.\right.$, $\left.\bar{\nu}_{A \times B}\left(x_{2}, y_{2}\right)\right\}$. Now let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X \times Y$, then

$$
\begin{aligned}
\bar{\nu}_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right) & =1-\nu_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right) \\
& \geq 1-\max \left\{\nu_{A \times B}\left(x_{1}, y_{1}\right), \nu_{A \times B}\left(x_{2}, y_{2}\right)\right\} \\
& =\min \left\{1-\nu_{A \times B}\left(\left(x_{1}, y_{1}\right), 1-\nu_{A \times B}\left(x_{2}, y_{2}\right)\right)\right\} \\
& =\min \left\{\bar{\nu}_{A \times B}\left(\left(x_{1}, y_{1}\right), \bar{\nu}_{A \times B}\left(x_{2}, y_{2}\right)\right)\right\},
\end{aligned}
$$

whence $\bar{\nu}_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right) \geq \min \left\{\bar{\nu}_{A \times B}\left(x_{1}, y_{1}\right), \bar{\nu}_{A \times B}\left(x_{2}, y_{2}\right)\right\}$ follows. Hence $\diamond(A \times B)$ is an intuitionistic fuzzy PMS-subalgebra of $X \times Y$.

The proof of the converse is trivial.
Definition 4.9. Let $A=\left(\mu_{A}, \nu_{A}\right)$ and $B=\left(\mu_{B}, \nu_{B}\right)$ are intuitionistic fuzzy subset of PMS-algebras X and Y reapectively. For $t, s \in[0,1]$ satisfying the condition $t+s \leq 1$, the set $U\left(\mu_{A \times B}, t\right)=\{(x, y) \in X \times$ $\left.Y \mid \mu_{A \times B}(x, y) \geq t\right\}$ is called upper t-level set of $A \times B$ and the set $L\left(\nu_{A \times B}, s\right)$ $=\left\{(x, y) \in X \times Y \mid \nu_{A \times B}(x, y) \leq s\right\}$ is called lower s-level set of $A \times B$.

Theorem 4.10. Let $A=\left(\mu_{A}, \nu_{A}\right)$ and $B=\left(\mu_{B}, \nu_{B}\right)$ be intuitionistic fuzzy subsets of X and Y reapectively. Then $A \times B$ is an intuitionistic fuzzy PMSsubalgebras of $X \times Y$ if and only if the nonempty upper t-level set $U\left(\mu_{A \times B}, t\right)$ and the nonempty lower s-level set $L\left(\nu_{A \times B}, s\right)$ are PMS-subalgebras of $X \times Y$ for any $t, s \in[0,1]$ with $t+s \leq 1$.

Proof: Let $A=\left(\mu_{A}, \nu_{A}\right)$ and $B=\left(\mu_{B}, \nu_{B}\right)$ be intuitionistic fuzzy subsets of X and Y respectively. Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X \times Y$ such that $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in U\left(\mu_{A \times B}, t\right)$ for $t \in[0,1]$. Then $\mu_{A \times B}\left(x_{1}, y_{1}\right) \geq t$ and $\mu_{A \times B}\left(x_{2}, y_{2}\right) \geq t$. Since $A \times B$ is an intuitionistic fuzzy PMS-subalgebra of $X \times Y$, we have

$$
\begin{aligned}
\mu_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right) & \geq \min \left\{\mu_{A \times B}\left(x_{1}, y_{1}\right), \mu_{A \times B}\left(x_{2}, y_{2}\right)\right\} \\
& \geq \min \{t, t\}=t
\end{aligned}
$$

Therefore, $\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right) \in U\left(\mu_{A \times B}, t\right)$. Hence $U\left(\mu_{A \times B}, t\right)$ is a PMSsubalgebra of $X \times Y$.

Also, Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X \times Y$ such that $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in$ $L\left(\nu_{A \times B}, s\right)$ for $s \in[0,1]$. Then $\nu_{A \times B}\left(x_{1}, y_{1}\right) \leq s$ and $\nu_{A \times B}\left(x_{2}, y_{2}\right) \leq s$. Since $A \times B$ is an intuitionistic fuzzy PMS-subalgebra of $X \times Y$, we have

$$
\begin{aligned}
\nu_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right) & \leq \max \left\{\nu_{A \times B}\left(x_{1}, y_{1}\right), \nu_{A \times B}\left(x_{2}, y_{2}\right)\right\} \\
& \leq \max \{s, s\}=s
\end{aligned}
$$

Therefore, $\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right) \in L\left(\nu_{A \times B}, s\right)$. Hence $L\left(\nu_{A \times B}, s\right)$ is a PMSsubalgebra of $X \times Y$.

Conversely, Suppose $U\left(\mu_{A \times B}, t\right)$ and $L\left(\nu_{A \times B}, s\right)$ are PMS-subalgebra of $X \times Y$ for any $t, s \in[0,1]$ with $t+s \leq 1$. Assume that $A \times B$ is not an intuitionistic fuzzy PMS-subalgebra of $X \times Y$. Then there exist $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X \times Y$ such that

$$
\mu_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right)<\min \left\{\mu_{A \times B}\left(x_{1}, y_{1}\right), \mu_{A \times B}\left(x_{2}, y_{2}\right)\right\}
$$

Then by taking $t_{0}=\frac{1}{2}\left\{\mu_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right)+\min \left\{\mu_{A \times B}\left(x_{1}, y_{1}\right)\right.\right.$, $\left.\left.\mu_{A \times B}\left(x_{2}, y_{2}\right)\right\}\right\}$, we get $\mu_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right)<t_{0}<\min \left\{\mu_{A \times B}\left(x_{1}, y_{1}\right)\right.$, $\left.\mu_{A \times B}\left(x_{2}, y_{2}\right)\right\}$. Hence, $\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right) \notin U\left(\mu_{A \times B}, t_{0}\right)$ but $\left(x_{1}, y_{1}\right) \in$ $U\left(\mu_{A \times B}, t_{0}\right)$ and $\left(x_{2}, y_{2}\right) \in U\left(\mu_{A \times B}, t_{0}\right)$, This implies $U\left(\mu_{A \times B}, t_{0}\right)$ is not a PMS-subalgebra of $X \times Y$, which is a contradiction. Therefore $\mu_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right) \geq \min \left\{\mu_{A \times B}\left(x_{1}, y_{1}\right), \mu_{A \times B}\left(x_{2}, y_{2}\right)\right\}$.
Similarly, $\nu_{A \times B}\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right) \leq \max \left\{\mu_{A \times B}\left(x_{1}, y_{y}\right), \mu_{A \times B}\left(x_{2}, y_{2}\right)\right\}$.
Hence $A \times B$ is an intuitionistic fuzzy PMS-subalgebra of $X \times Y$.
THEOREM 4.11. Let $A=\left(\mu_{A}, \nu_{A}\right)$ be an intuitionistic fuzzy subset of PMSalgebra X and let R_{A} be the strongest intutionistic fuzzy PMS-relation on X. If R_{A} is an intuitionistic fuzzy PMS-subalgebra of $X \times X$, then $\mu_{A}(0) \geq$ $\mu_{A}(x)$ and $\nu_{A}(0) \leq \nu_{A}(x)$, for all $x \in X$.

Proof: Since R_{A} is an intuitionistic fuzzy PMS-subalgebra of $X \times X$, it follows from Lemma 4.1 that $\mu_{R_{A}}(0,0) \geq \mu_{R_{A}}(x, x)$ and $\nu_{R_{A}}(0,0) \leq$ $\nu_{R_{A}}(x, x)$. Then, we have $\min \left\{\mu_{A}(0), \mu_{A}(0)\right\}=\mu_{R_{A}}(0,0) \geq \mu_{R_{A}}(x, x)=$
$\min \left\{\mu_{A}(x), \mu_{A}(x)\right\}$, where $(0,0) \in X \times X$, which implies $\min \left\{\mu_{A}(0), \mu_{A}(0)\right\}$ $\geq \min \left\{\mu_{A}(x), \mu_{A}(x)\right\}$, and so, $\mu_{A}(0)=\min \left\{\mu_{A}(0), \mu_{A}(0)\right\} \geq$ $\min \left\{\mu_{A}(x), \mu_{A}(x)\right\}=\mu_{A}(x)$. Moreover, $\max \left\{\nu_{A}(0), \nu_{A}(0)\right\}=\nu_{R_{A}}(0,0) \leq$ $\nu_{R_{A}}(x, x)=\max \left\{\nu_{A}(x), \nu_{A}(x)\right\}$, where $(0,0) \in X \times X$, whence follows $\max \left\{\nu_{A}(0), \nu_{A}(0)\right\} \leq \max \left\{\nu_{A}(x), \nu_{A}(x)\right\}$ and further $\nu_{A}(0)=\max \left\{\nu_{A}(0)\right.$, $\left.\nu_{A}(0)\right\} \leq \max \left\{\nu_{A}(x), \nu_{A}(x)\right\}=\nu_{A}(x)$.

Hence $\mu_{A}(0) \geq \mu_{A}(x)$ and $\nu_{A}(0) \leq \nu_{A}(x)$, for all $x \in X$.
Theorem 4.12. Let $A=\left(\mu_{A}, \nu_{A}\right)$ be an intuitionistic fuzzy subset of a PMS-algebra X and let R_{A} be the strongest intuitionistic fuzzy PMSrelation on X. Then A is an intuitionistic fuzzy PMS-subalgebra of X if and only if R_{A} is an intuitionistic fuzzy PMS-subalgebra of $X \times X$.

Proof: Assume that A is an intuitionistic fuzzy PMS-subalgebra X. Let $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in X \times X$. Then, we have

$$
\begin{aligned}
\mu_{R_{A}}\left(\left(x_{1}, x_{2}\right) *\left(y_{1}, y_{2}\right)\right) & =\mu_{R_{A}}\left(x_{1} * y_{1}, x_{2} * y_{2}\right) \\
& =\min \left\{\mu_{A}\left(x_{1} * y_{1}\right), \mu_{A}\left(x_{2} * y_{2}\right)\right\} \\
& \geq \min \left\{\min \left\{\mu_{A}\left(x_{1}\right), \mu_{A}\left(y_{1}\right)\right\}, \min \left\{\mu_{A}\left(x_{2}\right), \mu_{A}\left(y_{2}\right)\right\}\right\} \\
& =\min \left\{\min \left\{\mu_{A}\left(x_{1}\right), \mu_{A}\left(x_{2}\right)\right\}, \min \left\{\mu_{A}\left(y_{1}\right), \mu_{A}\left(y_{2}\right)\right\}\right\} \\
& =\min \left\{\mu_{R_{A}}\left(x_{1}, x_{2}\right), \mu_{R_{A}}\left(y_{1}, y_{2}\right)\right\} .
\end{aligned}
$$

and

$$
\begin{aligned}
\nu_{R_{A}}\left(\left(x_{1}, x_{2}\right) *\left(y_{1}, y_{2}\right)\right) & =\nu_{R_{A}}\left(x_{1} * y_{1}, x_{2} * y_{2}\right) \\
& =\max \left\{\nu_{A}\left(x_{1} * y_{1}\right), \nu_{A}\left(x_{2} * y_{2}\right)\right\} \\
& \leq \max \left\{\max \left\{\nu_{A}\left(x_{1}\right), \nu_{A}\left(y_{1}\right)\right\}, \max \left\{\nu_{A}\left(x_{2}\right), \nu_{A}\left(y_{2}\right)\right\}\right\} \\
& =\max \left\{\max \left\{\nu_{A}\left(x_{1}\right), \nu_{A}\left(x_{2}\right)\right\}, \max \left\{\nu_{A}\left(y_{1}\right), \nu_{A}\left(y_{2}\right)\right\}\right\} \\
& =\max \left\{\nu_{R_{A}}\left(x_{1}, x_{2}\right), \nu_{R_{A}}\left(y_{1}, y_{2}\right)\right\} .
\end{aligned}
$$

Hence R_{A} is an intuitionistic fuzzy PMS-subalgebra of $X \times X$.
Conversely, assume R_{A} is an intuitionistic fuzzy PMS-subalgebra of $X \times X$. Let $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in X \times X$. Then

$$
\begin{aligned}
\min \left\{\mu_{A}\left(x_{1} * y_{1}\right), \mu_{A}\left(x_{2} * y_{2}\right)\right\} & =\mu_{R_{A}}\left(x_{1} * y_{1}, x_{2} * y_{2}\right) \\
& =\mu_{R_{A}}\left(\left(x_{1}, x_{2}\right) *\left(y_{1}, y_{2}\right)\right) \\
& \geq \min \left\{\mu_{R_{A}}\left(x_{1}, x_{2}\right), \mu_{R_{A}}\left(y_{1}, y_{2}\right)\right\} \\
& =\min \left\{\min \left\{\mu_{A}\left(x_{1}\right), \mu_{A}\left(x_{2}\right)\right\},\right. \\
& \left.\min \left\{\mu_{A}\left(y_{1}\right), \mu_{A}\left(y_{2}\right)\right\}\right\}
\end{aligned}
$$

In particular, if we take, $x_{2}=y_{2}=0$ (or respectively $x_{1}=y_{1}=0$), then we get $\mu_{A}\left(x_{1} * y_{1}\right) \geq \min \left\{\mu_{A}\left(x_{1}\right), \mu_{A}\left(y_{1}\right)\right\}$ (or resp. $\mu_{A}\left(x_{2} * y_{2}\right) \geq$ $\left.\min \left\{\mu_{A}\left(x_{2}\right), \mu_{A}\left(y_{2}\right)\right\}\right)$ and

$$
\begin{aligned}
\max \left\{\nu_{A}\left(x_{1} * y_{1}\right), \nu_{A}\left(x_{2} * y_{2}\right)\right\}= & \nu_{R_{A}}\left(x_{1} * y_{1}, x_{2} * y_{2}\right) \\
& =\nu_{R_{A}}\left(x_{1}, x_{2}\right) *\left(y_{1}, y_{2}\right) \\
\leq & \max \left\{\nu_{R_{A}}\left(x_{1}, x_{2}\right), \nu_{R_{A}}\left(y_{1}, y_{2}\right)\right\} \\
& =\max \left\{\max \left\{\nu_{A}\left(x_{1}\right), \nu_{A}\left(x_{2}\right)\right\}\right. \\
& \left.\max \left\{\nu_{A}\left(y_{1}\right), \nu_{A}\left(y_{2}\right)\right\}\right\}
\end{aligned}
$$

In particular, if we take, $x_{2}=y_{2}=0$ (or respectively $x_{1}=y_{1}=0$), then we get $\nu_{A}\left(x_{1} * y_{1}\right) \leq \max \left\{\nu_{A}\left(x_{1}\right), \nu_{B}\left(y_{1}\right)\right\} \quad$ (or resp. $\nu_{A}\left(x_{1} * y_{1}\right) \leq$ $\left.\max \left\{\mu_{A}\left(x_{1}\right), \mu_{A}\left(y_{1}\right)\right\}\right)$

Therefore A is an intuitionistic fuzzy PMS-subalgebra of X

5. Conclusion

In this paper, we discussed the concept of intuitionistic fuzzy PMS-subalgebra under homomorphism and Cartesian product in a PMS-algebra. We confirmed that the homomorphic image and the homomorphic inverse image of an intuitionistic fuzzy PMS-subalgebra in a PMS-algebra are intuitionistic fuzzy PMS-subalgebras. We also proved that the Cartesian product of the intuitionistic fuzzy PMS-subalgebras of a PMS-algebra is an intuitionistic fuzzy PMS-subalgebra of a PMS-algebra. Furthermore, we characterized the Cartesian products of intuitionistic fuzzy PMSsubalgebras in terms of their level sets. Finally, we discussed the concept of the strongest intuitionistic fuzzy PMS-relation on an intuitionistic fuzzy PMS-subalgebra of a PMS-algebra and investigated some of its properties. We will further extend these concepts to intuitionistic fuzzy PMS-ideals of a PMS-algebra for new results in our future work.

References

[1] N. Anitha, K. Arjunan, Notes on intuitionistic fuzzy ideals of Hemiring, Applied Mathematical Science, vol. 5(68) (2011), pp. 3393-3402, URL: http://www.m-hikari.com/ams/ams-2011/ams-65-68-2011/anithaAMS65-68-2011.pdf.
[2] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, vol. 20(1) (1986), pp. 87-96, DOI: https://doi.org/10.1016/S0165-0114(86) 80034-3.
[3] K. T. Atanassov, New operations defined over the Intuitionistic fuzzy sets, Fuzzy Sets and Systems, vol. 61(2) (1994), pp. 137-142, DOI: https: //doi.org/10.1016/0165-0114(94)90229-1.
[4] B. L. Derseh, B. A. Assaye, Y. G. Wondifraw, Intuitionistic fuzzy PMSsubalgebra of a PMS-algebra, Korean Journal of Mathematics, vol. 29(3) (2021), pp. 563-576, DOI: https://doi.org/10.11568/kjm.2021.29.3.563.
[5] M. Panigrahi, S. Nanda, Intuitionistic Fuzzy Relations over Intuitionistic Fuzzy Sets, Journal of Fuzzy Mathematics, vol. 15(3) (2007), pp. 675688.
[6] J. Peng, Intuitionistic Fuzzy B-algebras, Research Journal of Applied Sciences, Engineering and Technology, vol. 4(21) (2012), pp. 42004205, URL: https://maxwellsci.com/print/rjaset/v4-4200-4205.pdf.
[7] P. M. S. Selvam, K. T. Nagalakshmi, Fuzzy PMS-ideals in PMS-algebras, Annals of Pure and Applied Mathematics, vol. 12(2) (2016), pp. 153159, DOI: https://doi.org/10.22457/apam.v12n2a6.
[8] P. M. S. Selvam, K. T. Nagalakshmi, On PMS-algebras, Transylvanian Review, vol. 24(10) (2016), pp. 31-38.
[9] P. M. S. Selvam, K. T. Nagalakshmi, Role of homomorphism and Cartesian product over Fuzzy PMS-algebra, International Journal of Fuzzy Mathematical Archive, vol. 11(1) (2016), pp. 1622-1628, DOI: https: //doi.org/10.22457/ijfma.v11n1a5.
[10] P. K. Sharma, Homomorphism of intuitionistic fuzzy groups, International Mathematical Forum, vol. 6(64) (2011), pp. 3169-3178, URL: http:// www.m-hikari.com/imf-2011/61-64-2011/sharmapkIMF61-64-2011.pdf.
[11] P. K. Sharma, On the direct product of Intuitionistic fuzzy groups, International Mathematical Forum, vol. 7(11) (2012), pp. 523530, DOI: https://doi.org/http://www.m-hikari.com/imf/imf-2012/9-12-2012/sharmapkIMF9-12-2012.pdf.
[12] L. A. Zadeh, Fuzzy sets, Information and Control, vol. 8 (1965), pp. 338-353, DOI: https://doi.org/10.1016/S0019-9958(65)90241-X.

Beza Lamesgin Derseh
Bahir Dar University
College of Science
Department of Mathematics
Bahir Dar, Ethiopia
e-mail: dbezalem@gmail.com

Berhanu Assaye Alaba
Bahir Dar University
College of Science
Department of Mathematics
Bahir Dar, Ethiopia
e-mail: birhanu.assaye290113@gmail.com

Yohannes Gedamu Wondifraw

Bahir Dar University
College of Science
Department of Mathematics
Bahir Dar, Ethiopia
e-mail: yohannesg27@gmail.com

