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MAIN PRO-APOPTOTIC MEMBER OF BCL-2 FAMILY PROTEINS – BAX 

 

 

Abstract: Programmed cell death (apoptosis) plays a vital role in the regulation of 

cellular homeostasis. Because of apoptosis fundamental importance, this process is 

highly regulated. One important set of factors involved in apoptosis regulation is the 

Bcl-2 family proteins. Bcl-2 family members form a complex regulatory network 

that controls cell survival and death in response to different physiological and 

pathological signals. This family includes both pro- and anti-apoptotic members, and 

Bax protein (Mol wt 21 kDa) is a major pro-apoptotic factor with multifunctional 

activity. This review summarizes new data about the main representative of Bcl-2 

family – Bax, its structure and mechanism(s) by which this protein modulates 

apoptosis.    
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1. INTRODUCTION 

 Apoptosis is a precisely controlled mode of eliminating injured, mutated or 

unwanted cells from the body or an organ of multicellular organism that, in contrast 

to necrosis, does not trigger the inflammation (HENGARTNER 2000; WYLLIE 2010). It 

is widely accepted that apoptosis may go through two major pathways (extrinsic and 

intrinsic), one of which involves mitochondria with proteins localized inside the 

intermembrane compartment of these organelles (KILIAŃSKA 2002). The 

mitochondrial (intrinsic) pathway of apoptosis is activated in response to several 

proapoptotic stimuli such as DNA damages, alterations in cytoskeleton stability 
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(RODOLFO, PIACENTINI 2002; NDOZANGUE-TOURIGUINE et al. 2008), reactive 

oxygen species (ROS), endoplasmic reticulum (ER) stress (MEIR et al. 2010), 

hypoxia (GREIJER, VAN DER WALL 2004), cytokine deprivation (SAVARAJ et al. 

2010; WYLLIE 2010), oncogene overdrive (WYLLIE 2010) as well as a large number 

of anticancer drugs (ŻOŁNIERCZYK et al. 2009; ROGALIŃSKA et al. 2010). All these 

death signals lead to permeabilization of outer mitochondrial membrane (OMM) and 

to the leakage of proapoptotic factors (procaspases, including procaspase-9, 

cytochrome c, Smac/DIABLO (Second mitochondria-derived  activator of 

caspases/Direct IAP-binding protein with low pI), apoptosis inducing factor – AIF, 

endonuclease G, Omi/HtrA2 (High temperature requirement protein A2)  protease as 

well as some heat shock proteins – Hsp10 or Hsp 60)  into the cytosol  where they 

initiate caspase activation and DNA fragmentation (KRAJEWSKI et al. 1999; SHAN et 

al. 2003; LOWE et al. 2004; BEDNAREK, KILIAŃSKA 2005). It is thought that protein 

efflux out of mitochondria is irreversible step of apoptosis. Therefore, it must be 

accurately controlled (CHIPUK et al. 2006; CHIPUK, GREEN 2008). A key role in this 

regulation is attributed to Bcl-2 (B-cell leukemia/lymphoma 2) family proteins many 

of which have become the objects of targeted therapy in oncology (BORNER 2003; 

WARR, SHORE 2008; WYLLIE 2010). This review focuses on the current data 

concerning the structure and biological activity of the main pro-apoptotic member of 

Bcl-2 family proteins, Bax, and especially the mechanisms by which it evokes 

OMM permeabilization and apoptosis induction. 

 

2. BCL-2 FAMILY PROTEINS 

 Up to now, over 30 proteins have been identified in higher eukaryotic cells 

that belong to Bcl-2 family (SKOMMER et al. 2007). They are all generally 

characterized by the presence of at least one highly conserved motif referred as Bcl-

2 homology domain (BH) in their molecules.  These domains, in number 1-4, take 

part in the mutual interactions between Bcl-2 family proteins as well as in the 

communication with other factors endowed with similar BH domain i.e. HAX-1 

(Hematopoietic-specific protein 1-associated protein X-1) (YEDAVALLI et al. 2005; 
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HOSSINI, EBERLE 2008). The Bcl-2 family comprises three subfamilies of proteins 

(Fig. 1):  

- Bcl-2-like survival factors – multi-domain anti-apoptotic proteins i.e. Bcl-2, 

Bcl-XL (Bcl-2 related gene, long isoform), Bcl-w (Bcl-2 widely expressed),  

Mcl-1 (Myeloid cell leukemia-1), Bcl-B (Bcl-2 family protein resembling Boo) 

and A1/Bfl-1 (KE et al. 2001; BORNER 2003; CORY et al. 2003; DROIN, GREEN 

2004; REED 2008; SCHRÖDER 2008). These subfamily members typically possess 

4 BH domains in their structure and they are usually anchored to intracellular 

membranes of the cell. 

- Bax-like death factors – multi-domain pro-apoptotic proteins e.g. Bax (Bcl-2 

associated x protein), Bak (Bcl-2 antagonist/killer 1), Bok/Mtd (Bcl-2-related 

ovarian killer/Spanish: Matador – the killer), Bcl-XS. They have three (or 4 in 

case of Bok/Mtd) BH domains and play a role as effector molecules capable of 

directly inducing mitochondrial permeabilization and apoptosis (BORNER 2003). 

- BH3-only death factors – single-domain pro-apoptotic proteins e.g. Bad (Bcl-2 

antagonist of cell death is equivalent to Bcl-2 associated death promoter), Bid 

(BH3-interacting domain death agonist), Bik (Bcl-2 interacting killer), Bim (Bcl-

2 interacting mediator of cell death), Bmf (Bcl-2 modifying factor), BNIP3 (Bcl-

2 and adenovirus E1B 19-kDa protein interacting protein 3), Bnip3L (Bnip3-

like), Hrk (Harakiri), Noxa/APR, Puma (p53-upregulated modulator of 

apoptosis) and Spike (Small protein with inherent killing effect). The members 

of this subfamily contain exclusively one domain – BH3; some of BH3-only 

proteins contain transmembrane domain, TM. They interact with Bax-like as 

well as Bcl-2-like proteins determining the fate of a cell (GUO et al. 2001; 

MOLDOVEANU et al. 2006; SKOMMER et al. 2007; HOSSINI, EBERLE 2008; REED 

2008). 

 Recently, several other pro-apoptotic proteins have been discovered, 

however their classification turned out to be very difficult due to the presence of 

only two BH domains in their structure. For example, Bfk (Bcl-2 family kin) and 

Bcl-G proteins contain BH2 and BH3 while Bcl-XS (Bcl-2 related gene, short 

isoform) and Bcl-XAK (Bcl-2 related gene, alternative killer) are equipped with BH3 
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and BH4 or BH2 and BH4 domains, respectively; the latter is usually connected 

with anti-apoptotic potential of proteins (BORNER 2003; KARST, LI 2007; HOSSINI, 

EBERLE 2008). Similarly, Bcl-rambo shares the structural homology with anti-

apoptotic factors of Bcl-2 family although its overexpression induces apoptosis 

(KATAOKA et al. 2001; HOSSINI, EBERLE 2008). Boo/Diva (Death inducer binding to 

vBcl-2 and Apaf-1) protein that comprises 4 BH domains may in turn act as pro-

apoptotic or pro-survival molecule depending on the cellular context (LEE et al. 

2001). 

 

 
 

Fig. 1. Domain structure of Bcl-2 family proteins (based on: CHIPUK et al. 2006; 

CHIPUK et al. 2008; BORNER 2003). The Bcl-2 family of proteins (multi-domain – A; 

BH3-only – B) is divided into 3 functional subfamilies (1, 2, and 3) based on their 

composition of BH (1-4) domains. For more details see text. α1-9 – α-helices; BH – 

Bcl-2 homology domain; TM – transmembrane domain. The BH3 domain in the 

pro-apoptotic proteins is a ligand for the hydrophobic pocket formed by the BH1-

BH3 domains of the anti-apoptotic members of Bcl-2 family. 

 

The classification of Bcl-2 family proteins based on their role in apoptosis 

seems to be rather conventional since the phenotype of many pro- or anti-apoptotic 
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proteins can be changed into the opposite one under some special conditions (LIN et 

al. 2004; HANSON et al. 2008). For example, Bcl-XL protein, known as anti-

apoptotic factor, may interact with mitochondria and induce OMM permeabilization 

after the binding phosphorylated K-Ras (phosphorylation on Ser181). Likewise, 

interaction of Bcl-2 protein with orphan receptor – Nur 77 (Nuclear receptor 77) 

converts the anti-apoptotic potential of Bcl-2 to pro-apoptotic (KOLLURI et al. 2008).  

It was demonstrated that Nur 77 also affected other generally anti-apoptotic proteins, 

such as Bcl-B, A1/Bfl-1, leading to reversion of their phenotype (LUCIANO et al. 

2007). 

 

2.1. Structure of Bcl-2 family proteins 

 Examination of the solution structure of Bcl-2 family proteins revealed some 

structural resemblances between pro- and anti-apoptotic molecules. These proteins 

adopt donut-shaped structure with two central, hydrophobic α-helices surrounded 

with 6-7 amphipathic α-helical regions. Additionally, they contain a long (60 aa), 

unstructured loop between the first and the second helical region of proteins 

(PETROS et al. 2004; SKOMMER et al. 2007; BORNER 2003).   

 BH1, BH2, and BH3 domains play an important role in the interactions of 

anti-apoptotic proteins with their pro-apoptotic opponents (PETROS et al. 2004; 

HOSSINI, EBERLE 2008)]. In pro-survival as well as in inactive pro-apoptotic proteins 

above domains form together a hydrophobic pocket which binds BH3 motif of pro-

apoptotic molecule by electric and hydrophobic interactions (BORNER 2003; PETROS 

et al. 2004; HOSSINI, EBERLE 2008). Evolutionary conserved amino acid residues – 

Gly145 and Arg146 localized in BH1 as well as Trp188 in BH2 domain of anti-

apoptotic proteins play a key role in the communication between the receptor pocket 

and BH3 domain of pro-death factor. It was indicated that the substitution of 

Gly145Ala/Glu and Trp188Ala prevented the heterodimerization of Bcl-2 family 

proteins, suggesting that these residues take part in the binding of hydrophobic clef 

to BH3 domain (GURUDUTTA et al. 2005). 

 The in vitro tests revealed that both Bax and Bcl-2 proteins were able to form 

channels permeable for chloride or potassium ions, respectively in the membranes 
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(BORNER 2003; PETROS et al. 2004). The process of pore forming required 

hydrophobic α-5 and α-6 helices overlapping the BH1 domain and the stretch 

between BH1 and BH2 regions. Both of them bear a resemblance to toxins produced 

by some bacterial strains (i.e. Escherichia coli or Corynebacterium diphtheriae) 

against others. It is thought that the selectivity of Bcl-2 family protein-forming 

channel is determined by amino acid sequence and electric charge of molecule(s) 

engaged in its assembly. Moreover, the chemical composition of the membrane 

surrounding the protein is not insignificant for its poration activity (CHRISTENSON et 

al. 2008). It has been shown that negatively charged phospholipid – cardiolipin 

supports the pore-forming activity of Bax whereas cholesterol-rich bilayers inhibit 

Bax integration into the membranes (CHRISTENSON et al. 2008). 

 BH3 domain is composed of 9-16 amino acid residues highly conserved 

among all Bcl-2 family proteins. It fulfils the role of ligand binding region which is 

necessary for both hetero- and homo-dimerization and apoptosis triggering (FREY et 

al. 2008). The BH3 domain of anti-apoptotic proteins is an integral part of 

hydrophobic cleft built with BH1, BH2 and BH3 in contrast to the BH3 domains of 

pro-apoptotic factors of this family which are hidden inside the molecules of 

inactive proteins or are exposed to the outside of the molecules when they are active 

(BORNER 2003; PETROS et al. 2004). Unbound BH3 domain of free pro-apoptotic 

proteins indicates unorganized structure while after their dimerization with pro-

survival partners it forms amphiphatic helix penetrating the hydrophobic pocket 

(BORNER 2003). It is worth mentioning that the substitution of Asp160 in BH3 

domain of Bad with Arg that facilitates the adoption of α-helical structure widely 

increased the affinity of BH3 peptide to Bcl-XL protein (PETROS et al. 2004). 

In addition, the amino acid sequence of Bcl-2 family proteins plays an important 

role for this interaction. It has been reported that conserved residues – Leu and Asp 

occupy the position 1 and 6 of BH3 domain in all Bcl-2 family members, whereas 

Ala or any hydrophobic amino acid (usually Ile) is situated at position 4 of BH3 

domain in anti- or pro-apoptotic proteins, respectively.  

 BH4 domain is localized in amino terminal region of anti-apoptotic Bcl-2 

family members as well as some pro-apoptotic proteins (Bcl-xs, Bcl-rambo, 
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Bok/Mtd, Boo/Diva) (HOSSINI, EBERLE 2008). For a long time, it was thought that 

BH4 domain was responsible for apoptosis inhibiting activity of pro-survival 

molecules (HOSSINI, EBERLE 2008). However, some anti-apoptotic proteins, e.g. 

Mcl-1, do not possess the above conserved region, but they all include a helical 

region − α1. In most of anti-apoptotic proteins this motif is enclosed in the BH4 

domain. Currently, it seems that just this helical structure controls pro-survival 

function of Bcl-2 inhibitors regardless of its amino acid sequence. Similar α-helical 

region was found in Bax molecule in which it negatively regulates pro-apoptotic 

function of this protein (CARTRON et al. 2004).  

 Some anti-apoptotic Bcl-2 family members contain a 60-aa regulatory loop 

between α-1 and α-2 helices that seems to work as a region of autoinhibition (Lin 

2004, PETROS et al. 2004). Chemical modifications (such as phosphorylation) within 

a given region result in abolishing the pro-survival potential of anti-apoptotic 

proteins and conversion of their phenotype. 

 Most of Bcl-2 family representatives contain a C-terminal 15-20-aa 

hydrophobic sequence – transmembrane (TM) domain – neighboring positively-

charged amino acid residues of Lys or Arg, that enables them to attach to the 

membranes of mitochondria, endoplasmic reticulum or cell nuclei (PETROS et al. 

2004; SCHINZEL et al. 2004a). Some of the proteins anchor to membranes 

immediately after their synthesis while others possess a transmembrane domain 

hidden inside their molecule and require to pass some conformational changes to 

expose TM on the surface (BORNER 2003; SCHINZEL et al. 2004a). 

 

3. BAX PROTEIN – A KEY EFFECTOR IN MITOCHONDRIAL PATHWAY 

OF APOPTOSIS  

 Human Bax gene is located on long arm of chromosome 19 within the region 

q13.3-q13.4 (APTE et al. 1995). This gene is about 4500 bp long and contains six 

exons. Alternative splicing of its primary transcript produces several isoforms of 

Bax (α, β, γ, δ, ω, σ and Ψ) (CARTRON et al. 2002; DROIN, GREEN 2004). In ischemic 

rat brain a novel splice variant of Bax, Bax κ, was identified (JIN et al. 2001). Main 

variant, firstly isolated – Baxα is encoded by all exons and has a molecular weight 
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of 21 kDa (192 aa). Its name – Bax (Bcl-2 associated x protein) is derived from its 

ability to neutralize and block the function of the main anti-apoptotic protein − Bcl-2 

(BORNER 2003). Function of the rest of Bax variants still remains unknown (DROIN, 

GREEN 2004).  The promoter of Bax has two canonical E-box motifs that bind c-

Myc/Max (Myc associated factor X) heterodimers. Moreover, Bax is under the 

control of P53 transcription factor and is involved in P53-mediated apoptosis 

(CARTRON et al. 2002). 

 Bax protein – an effectory promoter of apoptosis is constitutively expressed 

in the cells. In vital cells the described polypeptide is identified only as an inactive 

monomer or as the molecule bound to anti-apoptotic partner. Apoptosis-inhibitory 

proteins have a potential to neutralize the function of pro-death factors (CHIPUK et 

al. 2006; CHIPUK, GREEN 2008). It is accepted that in vital cells Bax is mainly 

localized in the cytosol, although it can be loosely attached to intracellular 

membranes (SCHINZEL et al. 2004b; SCHLESINGER, SAITO 2006). After activation in 

response to pro-death signals, Bax undergoes some conformational changes thereby 

incorporating the mitochondrial membranes persistently, forming pores and 

inducing OMM permeabilization (CHIPUK et al. 2006; CHIPUK, GREEN 2008). In 

active state this protein indicates diminished sensitivity to alkaline treatment, trypsin 

digestion as well as decreased susceptibility to proteolysis of α5 and α6 helices 

(BORNER 2003). In this state a significant increase of N-terminal region of Bax 

immunoreactivity (6A7 epitope between 13 and 19 amino acids) was demonstrated. 

However, this feature is thought to be reversible and independent of pro-survival 

Bcl-2 proteins (BORNER 2003; SHARPE et al. 2004). It would seem that the 6A7 

epitope exposition on the surface of Bax appears at very early stage of its 

conformational changes and it precedes protein oligomerization. Therefore, this 

immunoreactivity elevation can not be strictly identified with Bax activation and 

apoptosis induction (SHARPE et al. 2004). In addition, it is believed that Bax 

translocation and oligomerization are not enough to induce permeabilization of 

OMM, although they both are required (SKOMMER et al. 2007). 

 Bax protein shares a strong similarity of its tertiary structure with anti-

apoptotic members of Bcl-2 family, such as Bcl-2 and Bcl-XL (SUZUKI et al. 2000; 
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BORNER 2003; PETROS et al. 2004). Above polypeptide contains 9 α-helices. The 

seven of them surround two centrally-localized hydrophobic α-helical structures. 

The helix α5 is positioned the most internally in the molecule.  Between helices α-1 

and α-2 a long flexible loop region can be observed. BH1, BH2 and BH3 domains 

of the described protein, embraced with α-2, α-3 and α-4 helices, lay in the same 

orientation as the domains of Bcl-XL. In living cells they form hydrophobic cleft in 

analogous manner as anti-apoptotic proteins. It prevents from Bax dimerization 

under normal conditions (DROIN, GREEN 2004). In contradiction with Bcl-XL or Bcl-

2 proteins, BH3 domain of Bax does not go so deep into the hydrophobic pocket of a 

protein. Additionally Bax, similarly as anti-apoptotic factors, possesses in C-

terminus a transmembrane region responsible for directing of the molecule to the 

mitochondrial membrane (Fig. 1) (SUZUKI et al. 2000; SCHINZEL et al. 2004b). 

However, TM region of Bax, unlike of Bcl-2 or Bcl-XL, is not exposed to the 

cytosol. Instead of that, it moves back towards the pocket and binds to it as Bak or 

Bad proteins bind the hydrophobic pocket of Bcl-XL (SUZUKI et al. 2000; BORNER 

2003; PETROS et al. 2004). It has been revealed that a hydrogen bound formed by 

hydroxyl group of Ser184 side chain and carboxyl group of Asp98 is directly involved 

in the interaction between C-terminus of Bax and α4 region of its hydrophobic 

pocket (SUZUKI et al. 2000). It is also possible that C-terminus of Bax protein takes 

part in pocket stabilization and plays a role in the regulation of its translocation and 

oligomerization (SUZUKI et al. 2000; CARTRON et al. 2004). If the C-terminus of Bax 

is folded the pocket remains in a stable conformation. While the region is removed 

out of the hydrophobic cleft, the pocket collapses and the protein structure changes 

leading to protein dimerization and to its interaction with mitochondrial membrane. 

It is suggested that a removal of α-9 helical region (TM) is initiated by 

posttranslational modification of Bax (i.e. phosphorylation of Ser and Thr residues 

present in that region in large numbers) or some currently unknown factor, from 

behind of BH3-only subfamily, that competes with Bax for binding of its 

hydrophobic cleft. Interestingly, Pro168 can be a direct or indirect linker between N- 

and C-termini of Bax protein displaying a function in the stabilization of its structure 

(SCHINZEL et al. 2004b). Destruction of this interaction under apoptotic signal(s) 
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results in the exposition of TM domain and translocation of pro-apoptotic protein to 

the mitochondria. It is possible that Pro168 is a target for Pin 1 isomerase activity 

(peptidylprolyl cis/trans isomerase, NIMA-interacting 1) or a substrate for 

hydroxylation reactions.  

BORNER suggested sequential events that may occur in Bax-like proteins 

during the apoptosis induction (2003). According to this model Bax-like proteins are 

present in living cells in the cytosol in the form of monomers or remain loosely 

attached to OMM. This kind of contact does not lead to remodeling of Bax 

hydrophobic cleft which is stabilized by interactions with membrane phospholipids 

or some unidentified inhibitory factors. In the case of Bax the C-terminus of the 

protein needs to be released from the binding with its hydrophobic pocket. In 

contrast, Bak doesn’t require any extra signals because of its anchoring region that is 

always exposed outside the molecule. An alternative scenario assumes that the 

pushing aside α9 helix of the molecule evokes immediate changes in the protein 

structure: disintegration of hydrophobic cleft and exposition of BH3 domain. 

However, even then the incorporation of Bax to the membranes cannot be achieved 

because of the Bcl-2 anti-apoptotic proteins inhibiting BH3 domain of this pro-death 

molecule. Only in the presence of activated BH3-only proteins there occurs the 

release of Bax from the interaction with Bcl-2 or Bcl-XL. As a result of the 

liberation, Bax α5/α6 helices can stably incorporate into the mitochondrial 

membranes. It is also possible that Bax may be auto-activated or cross-activated 

with already active Bax-like molecules without the participation of BH3-only 

proteins. The next step of OMM permeabilization is the oligomerization of effector 

proteins (Bax, Bak, Bok) and pore forming. It is conceivable that this stage can also 

be stopped by Bcl-2-like proteins if they are overexpressed in the cells (BORNER 

2003). Therefore, apoptosis-mediating signals must generate multidirectional 

response to abrogate the multistage inhibition of anti-apoptotic proteins.  

 It was thought for a long time that α9 helix of Bax was only one region 

directing the molecule to the mitochondria. However, in 2004 CARTRON et al. 

suggested the presence of additional mitochondrial targeting sequence in α1 helix of 

that protein and proposed an alternative to Borner’s manner of Bax activation and 
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translocation. In viable cells, α1 helix of inactive Bax protein is situated close to  α2 

(BH3 domain), α5 and α6 regions and guards against their mitochondrial insertion 

(GRIFFITHS et al. 2001, MOLDOVEANU et al. 2006). According to the cited authors 

(CARTRON et al. 2004) the negative regulation of above helix is abrogated by its 

interaction with BH3 domain of the so-called direct activators from BH3-only 

proteins, e.g. Bid, Bim or Puma. This interaction leads to the opening of Bax 

molecule and to the exposure of α1 on the surface of pro-apoptotic protein. It has 

been established that Asp33 of Bax and Gly94, Met97, Arg84 of BH3-only protein play 

a key role in this binding. The hypothesis of CARTRON et al. (2004) arouses many 

controversies (SCHINZEL et al. 2004b, MING et al. 2006). It has been indicated that 

mitochondrial localization sequence is preceded by ART (apoptosis-regulating 

targeting domain) inhibitory domain (SCHINZEL et al. 2004b). Only if it was 

removed from the protein, the sequence would be uncovered. Thus, N-terminus of 

protein performs a role presumably only in inhibition of Bax activity. Indeed, its 

elimination from the molecule results in producing more potent pro-apoptotic 

protein − p18 Bax (CAO et al. 2003). Interestly, during apoptosis N-terminus of Bax 

may be cleaved by calpains (GAO, DOU 2000). Furthermore, transfection of Bax/p18 

fragment into cancer cells targeted this cleaved protein segment to mitochondria, 

which was accompanied by release of cytochrome c.  

 It has been demonstrated very recently (GEORGE et al. 2010) that Bax 

contains two functional mitochondrial targeting sequence that may act 

independently in mitochondrial translocation of Bax. They are located in helices α6 

and α9 and uncovering of one of them after conformational changes of Bax, directs 

the molecule to mitochondrial membrane. It has been revealed that only combined 

mutations in both of these regions preclude its mitochondrial translocation in HeLa 

cell line. 

 

4. MECHANISMS OF BAX-INDUCED MITOCHONDRIAL OUTER 

MEMBRANE PERMEABILIZATION 

 Bcl-2 family proteins regulate apoptosis via their influence on mitochondrial 

membrane permeability and efflux of pro-apoptotic factors from intermembrane 
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space of mitochondria, releasing Ca2+ ions from endoplasmic reticulum as well as on 

redox state in cell resulting from a translocation of cytochrome c to the cytosol, 

disruption of respiratory chain in mitochondria and production of reactive oxygen 

species (ROS) (BRECKENRIDGE et al. 2003; REED 2008; HANSON et al. 2008; HETZ, 

GLIMCHER 2008). 

 At present, it is accepted that Bax-mediated permeabilization may run 

through one of the following models. The most common mode of Bax action is that 

after homo- or heterodimerization with other pro-apoptotic Bcl-2 family molecules, 

Bax-like proteins form in outer mitochondrial membrane channels big enough to let 

pass cytochrome c and/or other pro-apoptotic factors, including procaspase-9 which 

together with cytochrome c forms apoptosome and initiates apoptosis (KRAJEWSKI et 

al. 1999; SCHLESINGER, SAITO 2006; KUMARSWAMY, CHANDNA 2009).  

 According to the next hypothesis, supported by experiments with liposome,  

Bcl-2 family proteins interact with channels that already exist in the membrane, e.g. 

with voltage-dependent anion channel (VDAC), and create structure permeable for 

molecules of the size of cytochrome c and even bigger (KUMARSWAMY, CHANDNA 

2009). 

 Importantly, Bax may cooperate with proteolytically truncated BH3-only 

member Bid (tBid) and Ca2+ in permeabilizing the outer mitochondrial membrane 

and releasing mitochondrial apoptogenic factors (LUO et al. 1998; WEI et al. 2000; 

DESAGHER et al. 1999; BEDNAREK, KILIAŃSKA 2005; BRUSTOVETSKY et al. 2010). 

Recent data have indicated that Bax and tBid together may induce the formation of a 

large lipid pore in mitochondrial membrane (TERRONES et al. 2004). It has been 

revealed that both of these proteins destabilize the structure of lipid bilayer and 

provoke pore formation. tBid protein facilitates lipid pore forming through its CBD 

domain (cardiolipin-binding domain) that directs pro-apoptotic proteins to 

cardiolipin-rich membranes (TERRONES et al. 2004).  

 Both, Bcl-2 and Bax proteins seem to be also involved in the regulation of 

Ca2+ release from endoplasmic reticulum (ER). During ER stress followed by 

accumulation of improperly folded proteins in the ER, overexpression of Bik protein 

induces Bax/Bak heterodimerization and leads to Ca2+ efflux from ER. Increase of 
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the level of Ca2+ in the cytosol may stabilize open conformation mitochondrial 

megachannel – a large structure embracing both of mitochondrial membranes which, 

among others, can participate in cytochrome c releasing (CHIPUK et al. 2006). 

 

5. REGULATORS OF BAX ACTIVITY 

5.1. Activators of Bax protein 

 The main regulators of pro-apoptotic activity of Bax-like proteins are BH3-

only members of Bcl-2 family. They may be divided into two subgroups depending 

on the way how they reveal pro-apoptotic potential of the so-called effectors 

(CHIPUK et al. 2006; LEBER et al. 2007; SKOMMER et al. 2007): 

- Direct activators (Bid-like proteins) e.g. Bid or Bim – proteins that transiently 

bind to Bax-like proteins and trigger their activation according to ‘hit and run’ 

model. They can also neutralize anti-apoptotic members of Bcl-2 family 

molecules. 

- Derepressors or sensitizers (Bad-like proteins) e.g. Bad, Bik, Bmf, Noxa, Puma 

– proteins that do not exhibit a potential to activate Bax-like proteins directly but 

are able to release effectors from interaction with anti-apoptotic molecules. 

The best known and the first described example of Bcl-2 family effector 

activation was tBid-dependent rearrangement of Bax molecule (ZAMZAMI et al. 

2000). It has been established that the interaction of Bax with tBid induces 

conformational change in pro-apoptotic effectory molecule (exposure of 6A7 

epitope on the molecule) resulting in protein translocation, incorporation to 

mitochondrial membranes and eventually their permeabilization. 

 Importantly, Bax can be also directly activated by factors that do not belong 

to Bcl-2 family. It has been demonstrated that cytoplasmic form of tumor suppressor 

protein – P53 induces Bax oligomerization and permeabilization of lipid vesicles at 

the level comparable to that obtainable with tBid (CHIPUK, GREEN 2004). It appears 

that a proline-rich region of P53 located between 62. and 91. amino acid residues is 

required for direct activating of Bax molecule. The deletion of this segment fails to 

permeabilize the membrane and arrests cytochrome c and other pro-apoptotic 

molecules inside the mitochondria. Additionally, P53 may also act as a derepressor – 
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a molecule that binds to anti-apoptotic protein (Bcl-XL) and releases of Bax from the 

interaction with its inhibitor. 

 Recently, several reports have revealed that calpain-activated protein product 

of Atg5 (autophagy-related gen 5) gene exhibits potential to activate the members of 

Bax-like family (CODOGNO, MEIJER 2006, YOUSEFI et al. 2006). Its 24 kDa 

N-terminal region, freed after the calpain-mediated cleavage, translocates from the 

cytosol into the mitochondrial membrane, thereby inducing apoptosis. Thus, Atg5 

plays a role of autophagy-apoptosis switch. However, the mechanism of Atg-

mediated Bax activation remains unclear. 

 Furthermore, CUDDEBACK et al. (2001) have reported the Bax-activating 

action of Bif-1/endophilin B1 (Bax-interacting factor 1) in murine pre-B 

hematopoietic FL5.12 cell line following IL-3 withdrawal. It has been also revealed 

that loss of Bif-1 protein inhibits Bax/Bak-mediated apoptosis in HeLa cells treated 

with siRNA, as well as in Bif-1-knockout mouse embryonic fibroblasts (MEFs), 

obtained from mouse ES cells through homologous recombination (TAKAHASHI et 

al. 2005). It seems that after apoptosis induction Bif-1 undergoes some 

posttranslational modification(s) enabling its binding to Bax protein. This 

association triggers conformational rearrangement in Bcl-2 family molecule and this 

incident is accompanied by its activation and incorporation into the mitochondrial 

membrane. Once Bax is activated, complex branches out (CUDDEBACK et al. 2001, 

TAKAHASHI et al. 2005). Moreover, it is thought that a failure of Bif-1 may 

contribute to the development of tumors under in vitro as well as under in vivo 

conditions. 

 In addition, Bax can also interact with P53-dependent protein – ASC 

(Apoptosis associated speck-like protein containing a caspase recruitment domain) 

which moves to mitochondria after apoptosis induction and, in this way, facilitates 

Bax relocation (LEBER et al. 2007). Similarly, it has been indicated that histone H1.2 

trafficking is a part of events leading to Bcl-2 family pro-apoptotic proteins 

activation, mitochondrial membrane permeabilization and apoptosis induction upon 

cell death stimulation (YAN, SHI 2003). It is unclear, however, how exactly H1.2 

histone acts to provoke Bax/Bak oligomerization after its release to the cytosol. 
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 It is worth mentioning that under special environmental circumstances, Bax 

and Bak molecules, can be activated in vitro without contribution of any additional 

proteins e.g. in response to nonionic detergents, pH increase or growth of 

temperature (BORNER 2003). Nevertheless, it is not known if this kind of Bax 

activation occurs under physiological conditions. 

 

5.2. Inhibitors of Bax protein 

 Among Bax regulators, with the exception of Bcl-2-like proteins that 

neutralize pro-apoptotic function of Bax, Ku70 protein – a component of DNA-PK 

(DNA-dependent protein kinase), 14-3-3 protein, and some Hsp proteins (Heat 

shock proteins) (αA and αB-crystalins,  Hsp70/dj1 and Hsp70/dj2 complexes) are 

found (LUCKEN-ARDJOMANDE, MARTINOU 2005; GOTOH et al. 2004; SHARPE et al. 

2004; SCHINZEL et al. 2004a). Anti-apoptotic activities of the above factors are 

probably associated with a sequestering of inactive Bax molecule in the cytosol. It 

has been revealed that the proteins abrogate apoptosis induced by several agents e.g., 

UV irradiation or staurosporine treatment, while their removal from the cells 

enhances cell susceptibility towards apoptosis.  

 Additionally, ASO (antisense oligonucleotides) strategy showed anti-

apoptotic potential of ARC protein (Activity-regulated cytoskeleton-associated 

protein), a factor, that is highly expressed in cardiac and skeletal muscle cells 

(LUCKEN-ARDJOMANDE, MARTINOU 2005). It was shown that the silencing of ARC 

expression contributed to conformational changes in the pro-apoptotic molecule Bax 

and mediated apoptosis. Bax activation and translocation can be brought to a halt by 

a new endogenous peptide – humanin, too (ZHAI et al. 2005). It was indicated that 

this 24-aa peptide is able to bind both with Bax and its direct activator – Bid (and 

tBid) and to inhibit tBid-induced Bax oligomerization. 

 It has been also suggested that Bax mediated apoptosis can be abolished by 

hexokinase-mitochondria interaction in a process regulated by Akt/PKB kinase 

activity (MAJEWSKI et al. 2004).  

 In 1998, XU and REED reported about the new anti-apoptotic protein, BI-1 

(Bax inhibitor 1), discovered by functional screening in yeast. Above inhibitor is 
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highly conserved in animals and plants (XU, REED 1998; HÜCKELHOVEN 2004). It 

has been well documented that BI-1 protein abrogates apoptosis followed by a large 

number of apoptotic stimuli, e.g. Bax overexpression, growth factor and cytokine 

deprivation, drug treatment (etoposide, staurosporine), bacterial pathogens (e.g. 

Chlamydia psittacci) in various cell lines (HÜCKELHOVEN 2004). This protein 

neutralizes pro-apoptotic function of Bax. However, the mechanism of BI-1 action 

does not seem to be related to its physical interaction with Bax molecule. These two 

proteins do not appear to associate with themselves.  

 The main negative regulators of pro-apoptotic function of Bax are Bcl-2 

family proteins. Bax can heterodimerize with Bcl-2, Bcl-XL, Bcl-w and, perhaps, 

with Mcl-1 proteins and these interactions prevent apoptosis in live cells (DROIN, 

GREEN 2004; EWINGS et al. 2007). After apoptosis induction, the release of Bax 

from the complexes with proteins that counteract its function takes place due to the 

fact that BH3-only proteins indicate approximately 100 times stronger affinity for 

anti-apoptotic Bcl-2-like members than their affinity for Bax (BORNER 2003). Free 

Bax molecules multimerize and/or interact with the components which already exist 

in the mitochondrial membranes forming a large channel permeable for cytochrome 

c and other pro-death factors. Thus, the cell fate depends essentially on the 

equilibrium between pro-survival and pro-apoptotic proteins. Indeed, it is well 

known that disruption of the balance between Bcl-2 family partners in the cells 

entails serious consequences manifested in the disorder of life-or-death decision and 

on the one hand, cell accumulation, or on the other hand, excessive cell elimination. 

Defective apoptosis causes a large number of diseases, including cancers, 

autoimmune syndromes, neurodegenerative disorders, diabetes, immunodeficiency 

syndromes, infertility (KILIAŃSKA 2002; PEREZ et al. 1997; BORNER 2003; HAYASHI, 

FAUSTMAN 2003; MOLDOVEANU et al. 2006; FREY et al. 2008).  

 

6. BCL-2 FAMILY PROTEINS – NEW TARGET FOR THE THERAPY OF 

DISORDERS WITH DEFECTIVE APOPTOSIS 

 In viable cells pro-apoptotic proteins co-exist in dynamic balance with anti-

apoptotic counterparts from Bcl-2 family (DAY et al. 2008). It means that decreased 
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expression of one of them leads to the reduction in the level of the other one. For 

example, in viable cells of HEK-293 cell line pro-apoptotic Bak is kept in check by 

pro-survival Mcl-1 protein, whereas a proper number of B lymphocytes in the body 

is strictly regulated by Noxa/Mcl-1 ratio in the cells. Admittedly, Bax requires some 

additional signals for its activation, but after apoptotic stimulation cell fate depends 

to a high degree on the equilibrium between Bax and its main inhibitor – Bcl-2 

(OLTVAI, KORSMEYER 1993). The overexpression of anti-apoptotic protein results in 

cell accumulation and may conduce to survival of transformed cells (CORY et al. 

2003). Bcl-2 over-expression has been indicated in leukemias, lymphomas and a 

large number of human solid tumors and its high level is often associated with 

unfavorable prognosis (CASTLE et al. 1993; CORNBLAU et al. 1999; DROIN, GREEN 

2004). Correspondingly, Baxα gene is mutated in many cancers (e.g. derived from 

colorectum, stomach, endometrium cells) and its expression level influences on the 

effectiveness of apoptosis induction (BARGOU et al. 1995, WAGENER et al. 1996; 

RAMPINO et al. 1997; OUYANG et al. 1998; REED 1999; FERREIRA et al. 2002). 

Therefore, Bax/Bcl-2 ratio may reflect susceptibility of neoplastic cells to 

spontaneous as well as drug-induced apoptosis. For instance, the cellular level of 

Bax and Bcl-2 proteins in prostate cancer cells is a predictive factor forecasting the 

result of the therapy based on androgen deprivation and radiation (KHOR et al. 

2007). It has been also shown that Bax/Bcl-2 rate in chronic lymphocytic leukemia 

(CLL) inversely correlates with resistance of leukemic cells to cytotoxic drug – 

chlorambucil in vitro as well as with clinical responsiveness (PEPPER et al. 1997). 

Above parameter mirrors the potential of the examined cells to apoptosis induction 

and its analysis may serve in vitro as potential tool for evaluating whether neoplastic 

cells are drug resistant or not (KOBYLINSKA et al. 2006).    

 Owing to the key role of Bcl-2 family proteins in apoptosis regulation they 

are an attractive target for modern anti-cancer therapy. There are many therapeutical 

approaches leading to modification of cellular balance between pro- and anti-

apoptotic Bcl-2 family molecules. Most of them are targeted to pro-survival proteins 

and are based on antisense oligonucleotides (JANSEN et al. 1998; KONOPLEVA et al. 

2000; FERREIRA et al. 2002). However, the number of trials aiming at inducing Bax 
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gene in tumor cells is growing all the time (WAGENER et al. 1996; LI et al. 2001; 

PIROCANAC et al. 2002; FALKE et al. 2003). As the introduction of a vector 

expressing Bax gene into cells involves a lot of difficulties associated with putative 

toxic effect of its protein product on normal cells, it is a great challenge for scientists 

to cause a cancer cell-directed expression of this gene (SEO et al. 2009).  

 A new engineered artificial transcription factor, 5ZFAV, seems to be a 

solution to this problem (FALKE et al. 2003). It has been revealed that 5ZFAV, 

containing zinc fingers from mouse Zif268 and transactivation domain from herpes 

simplex virus protein, VP16, selectively induces the expression of endogenous Bax 

and efficiently turns apoptosis on in P53-deficient sarcoma osteogenic Saos-2 cells. 

Interestingly, the impact of the novel molecule on P53 positive osteosarcoma cell 

line – U-2 OS appears to be much less potent giving the chance for selective pro-

apoptotic activity against P53-mutated tumor cells. 

 The Tet-On inducible system, containing reverse tetracycline transactivator 

(rtTA) and inducing transcription after the binding with tetracycline and its 

derivatives, seems to be very helpful in controlling Bax gene expression (WAGENER 

et al. 1996, SEO et al. 2009). It has been reported that the stable transfectants 

obtained from DLD-1 colon cancer cells transfected with above system (pTET-On 

and p-TRE Bax plasmids) and selected in the medium with geneticin, occur to be 

more sensitive to various drug-induced apoptosis than the cells without introduced 

Bax gene (KOBAYASHI et al. 2000).  

 On the other hand, it has been discovered that bax inactivation in oocytes of 

mice undergoing treatment with doxorubicine reduced their sensitivity to apoptosis 

and increased their viability (PEREZ et al. 1997). Since it is well known that 

development of infertility in anticancer drugs-treated women is one of the most 

common side effect of chemotherapy, the inhibition of Bax gene in germinal cells 

during the chemotherapy of cancer could be interesting strategy of infertility 

preservation (PEREZ et al. 1997).  

In conclusion, it seems that overexpression of Bax alone in cancer cells does 

not induce apoptosis but enhances its induction following anticancer treatment. A 

combination of conventional chemotherapy with gene therapy may be a new, very 

 



J. D. Żołnierczyk & Z. M. Kiliańska 23

potent strategy in cancer treatment. It is conceivable that the better understanding of 

apoptosis regulation may help to overcome apoptosis deficiency (typical in many 

cancers) and therapy resistance. 
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