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AssTrRACT: Modern humans are unique among anthropoids in many key features, including our advanced
intelligence, large brain-body size, thermal tolerance, and endurance capability. The objective of this
theoretical review is to update the theory of Previc (1999) postulating the importance of dopamine in
human evolution by synthesizing newer findings concerning dopamine’s role in human intellectual and
endurance capabilities. Recent evidence further supports the putative role of dopamine in advanced human
intelligence (especially cognitive flexibility) and thermal tolerance and endurance. One key breakthrough is
a collection of recent studies demonstrating a uniquely human dopaminergic innervation of the striatum
and prefrontal cortex—both essential to human cognition. Another potentially important finding is the
human-specific mutation of an enhancer to the EN1 gene that controls eccrine gland formation and plays
a major role in the development of dopaminergic brain systems. A plausible evolutionary scenario is put
forth in which the enhanced thermal capabilities linked to dopaminergic evolution may have gradually led
to the enhanced intellects of modern humans.
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Introduction

Humans are unique among primates and
even most mammals in several key re-
spects, most importantly our advanced
intelligence and thermal endurance capac-
ity during exercise. When these various
traits emerged during hominin evolution
remains speculative, but the theory pre-
sented in this paper—updated from that
of Previc (1999)—is that, because of their
synergistic relationships, most traits must
have emerged concurrently between~ 2.8
million years ago (mya) (just prior to the
emergence of Homo habilis) and ~1.2 mya
(after the emergence of Homo erectus).
One key synergy is in the area of hu-
man thermal tolerance, which largely de-
pends on the combined advantages of re-
duced body hair cover and predominantly
eccrine sweating; one without the other
would be much less advantageous (Lieber-
man 2015). Other linkages such as biped-
alism and increased stature would further
enhance thermal tolerance by decreas-
ing exposure to solar irradiance (Wheel-
er 1985), and thermal exchange via the
eccrine glands would be aided by the in-
creased surface-to-mass ratio (Allen’s rule)
(Tilkens et al. 2007). In turn, the ability
to travel long distances in the heat of the
midday sun would allow early humans to
scavenge and possibly chase-hunt for meat
while predators would be resting to avoid
hyperthermia (Carrier 1984; Bortz 1985;
Lieberman 2015). The switch to a tyros-
ine-rich carnivorous diet would increase
the brain-body ratio due to the combina-
tion of a larger brain (Previc 1999) and
reduced intestinal mass characteristic of
carnivores (Henneberg and Sarafis 1998)
and lead to a concomitant increase in do-
pamine-mediated advanced intelligence.
This paper will postulate that all of
these unique features of humans were

caused, causal to, or correlated with in-
creases in the neurotransmitter dopamine
and its precursor tyrosine during human
evolution. The key roles of dopamine in
the evolution of advanced intelligence and
thermal tolerance were previously postu-
lated (Previc 1999), but more recent find-
ings to be reviewed here provide a more
complete and compelling synthesis of the
dopaminergic role in these interleaved
components of human evolution. For one,
massive and unique increases in dopamine
innervation and activity in the human stri-
atum and frontal lobes of humans—key
areas involved in higher-level cognition—
have been recently found. The impor-
tance of dopamine in speech, abstract rep-
resentations, creativity and a host of other
key intellectual functions has also been
further demonstrated (see next section). In
terms of thermal tolerance, new findings
have documented the role of dopamine in
creating hair loss and the genetic overlap
between the formation of both brain dopa-
minergic systems and eccrine sweat glands
during human evolution (see “The Role
of Dopamine in Human Thermal Endur-
ance—New Findings”). And, the impor-
tance of meat consumption—previously
documented by cut marks on and stone-
flaked tools near animal bones in early
Homo sites—has been supported by genet-
ic analyses of human tapeworms (Hoberg
et al. 2001) and pH levels (Beasley et al.
2015) in the human stomach and gut.

Brain Dopamine and Human
Intelligence — New Findings
Dopamine and Human
Intelligence

Previc (1999) theorized the importance
of neurochemical changes involving the
neurotransmitter dopamine in the evolu-
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tion of human intelligence, highlighting
six key traits essential to human intel-
ligence and human language—motor
planning, working memory, cognitive
flexibility, abstract reasoning, temporal
analysis/sequencing, and generativity.
Previc (1999) argued against the role of
brain size and genetic factors in deter-
mining human intelligence, instead em-
phasizing the importance of epigenetic
transmission during human evolution.
He noted the role of prenatal factors in the
creation of brain lateralization in humans
(see also Previc 1991), which in most in-
dividuals is associated with profound dif-
ferences in intellectual and other abilities
between the left and right hemispheres
despite their identical anatomical size
and the absence of any known genetic
influence. The importance of nongenet-
ic factors in intelligence is supported by
recent genome-wide analyses that have
consistently shown that only about 5%
of the variance in intelligence as meas-
ured through standard tests is directly
attributable to genes (Benyamin et al.
2014; Davies et al. 2016; Sniekers et al.
2017; Kaminski et al. 2018), with many
of the key ones involved in dopaminergic
synaptic transmission (DeYoung et al.
2011; Zabelina et al. 2016; Kaminski et
al. 2018). Indeed, epigenetic and genetic
influences on just six genes involving the
synthesis, transmission, breakdown, and
re-uptake of dopamine at the synapse can
predict much of the variance in childhood
intelligence accounted by genome-wide
models (Kaminski et al. 2018).

The critical role of dopamine in key
“executive” abilities such as working
memory, creativity and language has
also been confirmed in numerous recent
studies and reviews: working memory
(D’Esposito and Postle 2015; Matzel and
Sauce 2023); creativity/divergent think-

ing (Takeuchi et al. 2014; Lhommee et
al. 2014; Zabelina et al. 2016); cogni-
tive flexibility and set-shifting (Ko et al.
2008; Garcia-Garcia et al. 2010); speech
(Simoyan et al. 2013; Fuertinger et al.
2018; Rusz et al. 2024); future goals and
planning (Hart et al. 2024); and time per-
ception and future orientation (Mitchell
et al. 2018). An underlying component
of dopamine’s role in most of these abil-
ities is cognitive flexibility—the ability
to update processing and actions on the
basis of new information and contexts.
For example, working memory requires
constant updating and attentional disen-
gagement when new information is pro-
cessed (Matzel and Sauce 2023), diver-
gent thinking requires switching to new
mental models and approaches (Palmiero
et al. 2022), and choice and switching of
goals is correlated with cognitive flexibili-
ty scores (Leclercq et al. 2023). Cognitive
flexibility stems from dopamine’s dual
role in the prefrontal cortex, promoting
the inhibition required to stop ongoing
behavior and the excitation required to
engage in new behavior and processing
(Mitchell et al. 2018; Di Domenico and
Mapelli 2023). This inhibition is carried
out by interneurons in the prefrontal cor-
tex, which are preferentially innervated
by dopamine in humans (see next sec-
tion).

Unique Dopaminergic Features
of the Human Brain

As of 1999, there was little direct evidence
that dopaminergic innervation of the hu-
man brain had selectively increased rela-
tive to other hominids. A lone study by
Tkemoto et al. (1997) showed many more
neurons staining for dopa-decarboxylase,
the enzyme that converts the precursor
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L-dopa to dopamine, in the striatum of
humans relative to monkeys. But the evo-
lutionary significance of this finding was
unclear since neither chimpanzee nor go-
rilla brains were used as comparisons.

Beginning in 2009, a series of studies
carried out by Raghanti and colleagues
(2009) found large increases in dopamin-
ergic innervation in areas of the human
brain critical to intelligence. All of these
studies used stains for tyrosine hydrox-
ylase (TH), the enzyme responsible for
converting tyrosine to L-dopa, the imme-
diate precursor to dopamine that crosses
the blood-brain barrier.

Raghanti et al. (2009) showed sub-
stantial TH staining in human but not
chimpanzee and gorilla prefrontal in-
terneurons, suggesting selective catecho-
laminergic activity in humans. However,
because TH is a precursor to noradren-
aline via dopamine, no firm conclusion
could be drawn as to the selectivity of
dopaminergic innervation of human pre-
frontal cortex. Raghanti et al. (2016) later
showed, using TH staining and a meas-
ure of axonal length to neuronal density,
over twice as much dopaminergic inner-
vation in the medial caudate portion of
the dopamine-rich human dorsal stri-
atum compared to that of gorillas and
chimpanzees. The noradrenergic contri-
bution to the TH increase in this case
could be ruled out because noradrenaline
concentrations in the human caudate are
~50 times less than those of dopamine
(Tong et al. 2006), despite both catecho-
lamines constituting only a tiny overall
percentage of the total neurons in the
caudate nucleus and dorsal striatum, the
latter containing both the caudate and
putamen. The reason for the huge differ-
ence in catecholamine concentrations is
because of the extraordinary arborization
of dopamine axons emanating from the

midbrain substantia nigra, with a single
nigrostriatal axon on average contacting
up to 75,000 striatal neurons, or 2.7% of
the total volume of the neostriatum
of the rat (Matsuda et al. 2009). Tyrosine
hydroxylase staining in other subcorti-
cal dopamine-rich regions was generally
greater in humans but less dramatical-
ly so than in the medial caudate nucle-
us. The differences between humans and
other hominids in dopamine innervation
in the medial caudate were especially im-
pressive in Raghanti et al. (2016) due to
the remarkably low variability in human
TH levels in that region (Raghanti et al.
2016, Fig. 3).

Sousa et al. (2017) reported elevated
TH expression as well as that of dopa-
mine decarboxylase in a wide range of
brain areas in humans relative to chim-
panzees. The largest differences overall
were in the dorsal striatum, but there
were also major differences in prefrontal
interneurons, with almost no ape pre-
frontal interneurons staining for TH.
In yet another study using TH staining,
Hirter et al. (2021) showed significantly
greater dopaminergic innervation in the
ventral striatum (ventral palladium and
nucleus accumbens) of humans relative
to chimpanzees and gorillas. Finally, Ma
etal. (2022) showed, based on the relative
staining for TH vs. somatostatin (SST),
that a remarkable substitution of dopa-
mine for SST occurred during human
evolution in prefrontal interneurons,
with only 2.4% of human TH-stained
interneurons co-localized with SST, in
contrast to almost 50% in the macaque
monkey. The percentage of TH staining
could not even be calculated in the in-
terneurons of chimpanzees and gorillas
because it was essentially nonexistent
(Ma et al. 2022), in line with the findings
of Raghanti et al. (2009) and Sousa et al.



Dopamine and Human Intelligence Evolution 35

(2017). The significance of this intrigu-
ing substitution of SST for dopamine in
the very interneurons presumed to be
involved in the key ability of cognitive
flexibility (see earlier section) remains
unclear, however.

Doll et al. (2024) in their Figure 1b
summarize the expansion of dopamin-
ergic systems in the human brain that
has been documented using TH stain-
ing as well as staining for dopa decar-
boxylase and DAT, which reabsorbs syn-
aptic dopamine back into presynaptic
neurons. Additional evidence of a do-
paminergic-intelligence link in humans
are the significant correlations between
volume of the dopamine-rich dorsal
striatum and intelligence (Grazioplene
et al. 2015; Kaminski et al. 2018). (By
contrast, overall brain volume predicts
only a small amount of the variance in
human intelligence—Pietschnig et al.
2015.) These findings confirm the previ-
ously documented importance of the in-
tegrity of striatal-frontal circuits (Kling
and Tucker 1967) and of the striatum in
particular (Goldman and Rosvold 1972)
for primate cognitive development.
Moreover, selective destruction of do-
pamine neurons (Brozoski et al. 1979)
or blockade of DI and D2 post-synaptic
dopamine receptors (Ranganath and Ja-
cob 2016) essentially replicates the cog-
nitive deficits following lesioning of the
prefrontal cortex.

In contrast to the expansion of do-
paminergic innervation in the prefron-
tal cortex and striatum, expression of
other major neurotransmitters such as
norepinephrine, GABA, glutamate and
acetylcholine appears either unchanged
or even reduced in humans (Sousa et al.
2017; Raghanti et al. 2018). For exam-
ple, TH staining in prefrontal interneu-
rons did not co-locate with staining for

dopamine beta-hydroxylase (Sousa et al.
2017), which converts dopamine into
norepinephrine, indicating that brain
levels of norepinephrine are conserved in
hominin evolution. While serotonergic
innervation may have increased in cer-
tain areas of the human brain (Raghanti
et al. 2009; Saniotis et al. 2021), there is
little evidence that serotonin contributes
to the advanced human cognitive skills
listed by Previc (1999), as it even opposes
dopamine action in the striatum and pre-
frontal cortex during learning and mem-
ory (Luciana et al. 1998; Daw et al. 2002;
Olvera-Cortes et al. 2008). Also, unlike
dopamine, serotonin in most humans
does not more densely innervate the left
hemisphere housing speech and analyt-
ical intelligence, nor can the hyperther-
mic action of serotonin (Tormoehlen and
Rusyniak 2018) be reconciled with the
greater thermal tolerance and endurance
capabilities developed in early hominin
evolution (see next section). However,
brain serotonin does foster social coop-
eration and other prosocial behaviors
(Crockett 2009), which may have facili-
tated the use of language and contributed
to cultural and technological exchange
during later human evolution (Raghanti
et al. 2018; Saniotis et al. 2021).

Finally, the large increases in dopa-
mine innervation of the human prefron-
tal cortex and striatum overall parallel
the greater dopaminergic activity in the
left hemisphere of most humans (Lar-
isch et al. 1998; Previc 1999; Cho and
Strafella 2009)—the citadel of advanced
human thought with its dominance in
speech, grammar, motor sequencing, ab-
stract reasoning, analytical intelligence,
and other unique characteristics of hu-
man cognition (Previc 1999; Simon-
yan et al. 2013; Fuertinger et al. 2018;
Rusz et al. 2024). At least two of these
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cognitive abilities—speech and cognitive
flexibility—have been shown to involve
dopamine circuits specifically in the left
hemisphere (Ko et al. 2008; Simonyan et
al. 2013; Fuertinger et al. 2018).

The Role of Dopamine
in Human Thermal
Endurance—New Findings

It has long been theorized that the emer-
gence of Homo coincided with an en-
hanced ability to endure strenuous ac-
tivity over large distances and tolerate
heat, useful in persistence hunting or
scavenging (Carrier 1984; Bortz 1985;
Wheeler 1985; Bramble and Lieberman
2004; Lieberman 2015). It is still debated
whether early humans engaged in chase
hunting (more likely to be associated
with endurance running), active scaveng-
ing, or passive scavenging (Pobiner 2020),
but all of these would have required great
energy expenditures in the midday heat,
when other predators would be inactive.
Regardless of the specific means of pro-
curing the meat, the ability of early Homo
to tolerate heat would have been critical to
overcoming these energetic demands.
Besides its direct role in intellectual
functioning, a crucial role of dopamine
in humans is to prevent hyperthermia
during endurance activity. Dopamine
levels are elevated during high-intensity
and endurance activity (Bortz et al. 1981;
Marques et al. 1984; Tyler et al. 2023),
and dopamine cells in tissue slices from
the anterior hypothalamus, important in
temperature regulation, are mostly sensi-
tive to temperature increases (Scott and
Boulant 1984). The importance of dopa-
mine in preventing hyperthermia during
endurance exercise has been document-
ed in many past studies (e.g., Cox and

Lee 1980; Marques et al. 1984; Lee et al.
1985; Bauer et al. 1989), and its bene-
fits in sustaining endurance performance
have been confirmed by more recent
ones (Balthazar et al. 2010; Zheng and
Hasegawa 2016). Recent clinical findings
have also substantiated the important
effects of reduced dopaminergic activity
in hyperthermic syndromes such as the
Parkinsonism Hyperpyrexia Syndrome
(Newman et al. 2009; Linares et al.
2016; Coon and Low 2018) and the Neu-
roleptic Malignant Syndrome associated
with anti-psychotic treatments in schizo-
phrenia (Tormoehlen and Rusyniak 2018;
Hirschbeck et al. 2022), both in contrast
to the hypothermic effect of disinhibited
dopamine activity in Huntington Dis-
case (Weydt et al. 2018).

How dopamine transiently achieves
its hypothermic action during endurance
activity is unclear, since dopamine evi-
dently does not directly control sweating
(Shibasaki and Crandall 2010); rather,
hyperhidrosis (excessive sweating) is part
of the Dopamine Withdrawal Syndrome
(Chaudhuri et al. 2015). Dopamine-in-
duced vasodilation (Brodde 1982; Brown
et al. 2007) is one potential mode of ac-
tion, since shunting of the blood to ex-
tremities allows for more effective heat
transfer (Charkoudian 2003). However,
dopaminergic effects are complex in
that they may be temperature depend-
ent—hypothermic at high temperatures,
hyperthermic at low ones (Brown et al.
2007)—and it has even been argued that
there are beneficial effects of brain dopa-
mine on endurance activity aside from its
effects on temperatures (e.g., Balthazar
et al. 2010; Zheng and Hasegawa 2016,
Fig. 2). Previc (1999) speculated that do-
pamine’s role in motor behavior may ac-
tivate a caudate-hypothalamic axis (Lee
et al. 1985) during exercise that enhanc-
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es oxygen metabolism and delivery in
advance of an actual rise in temperature.

Previc (1999) proposed that the en-
hanced endurance capability of humans
gave rise to a surge in brain dopamine dur-
ing early human evolution, mainly due to
the increase in meat consumption, which
would have provided a substantially great-
er amount of tyrosine in the diet. The ev-
idence for increased meat consumption
beginning around 2 mya is compelling
(Ferraro et al. 2013; Zink and Lieberman
2016; Pobiner 2020), although sampling
biases may distort some of the archaeo-
logical findings (Barr et al. 2022). The ev-
idence for meat-eating includes: 1) stone
artifacts and bone cut marks in close prox-
imity to early human remains, suggesting
meat extraction from carcasses (Pobiner
2020); 2) the reduced size of the modern
human large intestine (Henneberg and
Sarafis 1998) and an increase in stomach
acidity (Beasley et al. 2015), both associ-
ated with carnivorous diets; 3) changes
in dentition (smaller teeth, especially ca-
nines; more bite strength in molars) that
could have reflected the consumption of
softer, processed meat (Dean and Cole
2013; Zink and Lieberman 2016); and
4) the evolution of human-specific tape-
worms linked to African fauna around 1.7
mya (Hoberg et al. 2001). The increased
tyrosine in the diet of early Homo would
have major consequences in that it could
have stimulated growth hormone (Tam et
al. 2020), thereby increasing stature and
brain volume (Yuan et al. 2020), which are
significantly correlated (Taki et al. 2012).
The effect of meat consumption on height
has been demonstrated in past as well as
recent large-scale studies (Suzuki 1981;
Desmond et al. 2021; Mosites et al. 2017).
The enhancement of growth hormone by
tyrosine may be mediated by dopamine,
although not all evidence is supportive.

But it is clear that dopamine itself, in the
brain and elsewhere, is dependent on ty-
rosine availability (Montgomery et al.
2003), as is cognitive capability, especially
cognitive inhibition (Bloemendaal et al.
2018; Hase et al. 2015; Kuhn et al. 2019).

Despite dopamine’s important role
in thermal tolerance, a key issue was left
unanswered in Previc (1999): How could
brain dopamine have been a major force
in the evolution of human endurance if
it was dependent on that endurance ca-
pability and the consequent increase in
meat consumption? A possible solution
to this conundrum is the recent find-
ing that the ENGRAILED gene (EN1),
a transcription factor that facilitates the
formation of eccrine sweat glands (Aldea
et al. 2021; Aldea and Kamberov 2022),
underwent an evolutionary change in
humans due to repeated human-specif-
ic mutations of a key enhancer, ECE18.
These mutations likely contributed to
increasing eccrine density in humans
~10-fold relative to chimpanzees (Al-
dea and Kamberov 2022, which facili-
tates the phenomenal ability of humans
to eliminate up to one liter of water per
hour (Smith et al. 2021) and 12 liters per
day by means of evaporative cooling in
the skin. It is generally acknowledged
that 90% of heat loss occurs through the
skin, mostly by radiation and convection;
however, evaporative cooling through the
eccrine glands becomes more critical at
high temperatures (Wang et al. 2016).
What is intriguing about the ENI1 evo-
lutionary progression is that this gene
is also important in the development of
midbrain dopaminergic systems (Simon
et al. 2004; LePen et al. 2008; Nordstro-
ma et al. 2018; Nouri and Awatramani
2017), the primary source of dopamine
in the forebrain. EN1 is part of a con-
stellation of genes and pathways with
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many diverse effects in the human body
but which all interact to influence both
sweating and exercise tolerance as well as
the formation and sustenance of brain do-
pamine systems. These include NURR1
(Amoasii et al. 2019), the WNT family
(Alves dos Santos and Smidt 2011), and
especially FOXA1 (Ferri et al. 2007; Cui
et al. 2012), the latter of which helps reg-
ulate both EN1 and NURRI (Ferri et al.
2007). However, only EN1 via mutations
of its enhancer ECE18 is confirmed to
have undergone a major functional alter-
ation in humans (Aldea et al. 2021).

Given the fact that each of these
genes has multiple regulatory functions
in human development, it is possible
that the links between these key dopa-
minergic genes and sweating are coinci-
dental. Or, the EN1 mutation may have
affected dopamine and eccrine sweating
independently, since eccrine function is
largely controlled by cholinergic rather
than dopaminergic transmission (Shiba-
saki and Crandall 2010). Regardless, mu-
tations of an enhancer to a major gene
regulating both sweat gland formation
and dopaminergic brain development
offers a tantalizing clue as to how dopa-
mine and thermal tolerance linked up
during human evolution.

In contrast, the reduced body hair
cover may have been more directly in-
fluenced by dopamine in that dopamine
agonists are known to decrease hair cov-
er by stimulating catagen (Langan et al.
2013), which prevents the transforma-
tion of fine vellus hair into fully mature
terminal hair. The role of dopamine in
hair loss is demonstrated by the hair
loss in >50% of all Parkinson’s patients
receiving dopaminergic therapy (Lee et
al. 2024). Decreased hair cover would
combine with increased dopaminergic
vasodilation (Brodde 1982; Brown et al.

2007) to dissipate heat through the skin
via the eccrine glands. A final thermal
advantage possibly conferred by the ty-
rosine-dopamine link is the elongation
of the human body, which would de-
crease solar irradiance and increase sur-
face-to-mass ratio, thereby enhancing
dermal heat transfer. While Wheeler’s
original theory posited that bipedalism
per se—which preceded the evolution
of the Homo genus—increased thermal
tolerance and endurance, this remains
a contentious issue (see David-Bar-
rett and Dunbar (2016) vs. Ruxton and
Wilkinson (2011)). But bipedalism as-
sociated with an elongated body would
certainly have provided a greater means
of dissipating heat, in line with Allen’s
rule. Allen’s rule is supported by both
experimental studies of limb length
and metabolism (Tilkens et al. 2007) as
well as the negative association between
body height and risk of heat stroke (Tay-
lor et al. 2024).

Many other changes in the human
physique, discussed by Bramble and
Lieberman (2004), may have simply
been associated with the elongation of
the body in humans. Others such as
changes in dentition and the shape of
the foot (Bramble and Lieberman 2004;
Zink and Lieberman 2016) have less
clear evolutionary origins, but epigenet-
ic factors may have played a role in these
as well (Quinn 2012; Khalaf et al. 2022).
One adaptation that is more likely to
have coincided with the loss of terminal
body hair is the increased melanin con-
tent of the skin, which would have offset
the dangers of increased solar irradia-
tion due to the loss of hair cover (Jablon-
ski 2021). Without such pigmentation,
folate metabolism would be seriously
impaired, threatening hominin repro-
ductive success (Jablonski 2021; Lucock
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2023). Melanin synthesis is influenced
by many factors, but it is ultimately de-
pendent on tyrosine and its conversion
to L-dopa and then dopaquinone (Ma-
randuca et al. 2019), consistent with ev-
idence that L-dopa treatment for Parkin-
son’s disease has stimulating effects on
melanogenesis (Bougea et al. 2019). In
line with the hypothesized link between
skin pigmentation and reduced hair cov-
er during early Homo evolution, signifi-
cant inverse correlations exist between
skin pigmentation and hair follicle den-
sity and hair length in extant humans,
with the former accounting for over 28%
of the variance in follicle density (Dhug-
ga et al. 2014).

Implications for Human
Evolution

The linkage between EN1 and associ-
ated genes and dopaminergic brain de-
velopment suggests that the mutations
of the EN1-enhancer ECE18 may have
been a catalyst for ensuing evolutionary
changes in early Homo. Several ration-
ales support the view that the enormous
increase in eccrine sweat glands oc-
curred before many other evolutionary
changes such as decreased hair cover
and increased stature. Of the three fac-
tors unique to human thermal tolerance,
elongation of the body occurred later in
the period from 2.5 to 1.5 mya, based on
the skeletal record (Will et al. 2017). The
other factor—reduced hair cover due to
a retraction of terminal hair—may have
occurred secondarily as well, for in the
absence of copious sweating capabilities
a loss of hair cover would have exposed
humans to damaging solar radiation,
with mixed thermoregulatory effects
(David-Barrett and Dunbar 2016). (By

contrast, the benefits of an increase in
eccrine sweat glands would also have
been limited without a concomitant de-
crease in hair cover (Lieberman 2015),
but at least expanded eccrine sweating
by itself would not have proven harm-
ful). An additional reason for believing
in the primacy of eccrine gland evolu-
tion is that greater eccrine activation
and perhaps density is associated with
hotter climates (Best and Kamilar 2018;
Best et al. 2019), and the climate of the
savanna was hotter at the beginning of
hominin evolution than after 2.5 mya,
when worldwide climate underwent
a cooling trend (Stanley 1995). On the
other hand, as the climate cooled and
dried and forests in East Africa gave way
to grassland, arboreal creatures such as
the Australopithecines would have had
more trouble adapting to the new cli-
mate than early Homo, the latter having
a greater surface-to-mass area, reduced
hair cover, and a more advantageous
foot structure (Bramble and Lieberman
2004). Because ENI1 influences both
eccrine and hair follicle development,
it cannot be ruled out that the eccrine
increase and loss of hair cover occurred
simultaneously; however, hair follicle
density per se has not changed in hu-
mans relative to chimpanzees (Kamberov
et al. 2018), and there is no evidence
that EN1 promotes the catagen-induced
loss of terminal hair.

One plausible evolutionary scenario
is portrayed in Figure 1. An initial genet-
ic adaptation involving ECE18 and the
EN1 gene could have independently in-
creased eccrine sweat gland density and
dopaminergic brain innervation. The lat-
ter’s elevation would then contribute to
reduced human hair cover and increased
peripheral vasodilation to further en-
hance human thermal tolerance.
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EN1

T

Increased * Increased eccrine glands
Dopamine ﬂ * Hair loss Increased
* Vasodilation in skin thermal
tolerance

Increased brain
volume

* Elongation of body
* Dark pigmentation

Increased Endurance activity
Meat/IYrosine  Commm— during midday
consumption

Figure 1. A hypothetical scenario for the rise of human intelligence and endurance capabilities in early
human evolution. A mutation of the ECE18 enhancer to the regulatory gene EN1 could have expanded
both eccrine gland density and brain dopaminergic systems. In turn, dopamine would facilitate com-
plementary heat loss mechanisms that allowed for increased endurance capabilities and the ability of
early humans to exploit the African savanna for procurement of meat. The tyrosine and other proteins
contained in the more carnivorous diet would lead to an increase in brain size, height, melaninization
of the skin, and further increases in brain dopamine

This facilitated the greater exploita-
tion of the savanna grasslands by permit-
ting travel over longer distances under
thermally stressful conditions to procure
meat, rich in tyrosine. The increase in
tyrosine would have further increased
brain dopamine, physical stature, and
brain size along with increasing the mel-
anin content of the human skin to pro-
tect it against the increased solar absorp-
tion due to the loss of hair cover. Once
begun, the entire cyclical process could
have been a gradual one, as suggested
by Jablonski (2021, Fig. 1). A gradualist
scenario is consistent with evidence that
dopamine levels can be altered by epige-
netic mechanisms and easily traverse the
placenta, steadily accumulating over gen-
erations (see Previc 2009). The gradualist

view of dopaminergic expansion is also
consistent with recent re-appraisals of
the cognitive capabilities of Homo erec-
tus and archaic humans, given evidence
of advanced lithic technology, abstract
designs, food processing, and the use of
fire dating back hundreds of thousands
of years and, in some cases, even longer
(Bednarik 1995; DeLouize et al. 2017;
Clark and Henneberg 2021).

The putative rise in brain dopamine
in conjunction with eccrine gland ex-
pansion and a less hairy and darkened
skin is necessarily speculative and can-
not yet be linked to a specific timeframe,
since all scientists can currently deci-
pher about soft tissue changes during
human evolution is the difference be-
tween extant humans and chimpanzees.
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That divergence is believed to have oc-
curred about 6-7 mya, and each species
has evolved since then. The presence of
the ECE18 mutations in the Neander-
thal genome might push its existence
as far back as back as 800 kya and per-
haps somewhat plausibly even to the
emergence of Homo erectus, but in the
progression from Homo habilis to Homo
erectus all that can be determined from
the fossil and archaeological record is
that more advanced tools were used to
extract meat from carcasses, elongation
of the body occurred, cranial capacity
increased, and dentition evolved with
ingestion of softer foods (Dean and Cole
2013). Aside from some limited genet-
ic evidence related to tapeworm muta-
tions, suggesting meat-eating as early as
~2 mya (Hoberg et al. 2001), there is lit-
tle else available to capture precisely the
evolutionary past other than theoreti-
cal analyses. Chemical composition in
bone—especially relative zinc isotopes
(Z% to Z%) and carbon and nitrogen
amino acid isotopes—offers promise in
determining when greater carnivory oc-
curred (Jaouen 2016; Jaouen et al. 2022;
Larsen 2022), but these measures are
difficult to interpret with remains dat-
ing back millions of years. So, definitive
findings concerning when the putative
rise in dopamine first occurred during
hominin evolution is still lacking.
According to Previc (2009), the hom-
inin progression leading from Homo ha-
bilis to Homo erectus was a major step
in establishing the “dopaminergic mind”,
but it was not the final stage. Despite
large migrations of Homo erectus to dif-
ferent latitudes and regions with vastly
different climates along with the thermal
effect of clothing wear beginning around
170 kya (Toups et al. 2011), human in-
telligence, brain size, meat-eating, body

height, sweat gland density, and many
other distinguishing features of modern
humans never retreated to pre-erectus
levels. It may be presumed, as Previc
(2009) argued, that dopamine levels in
the human lineage continued to increase
to the present, possibly epigenetically,
as dopamine levels in individuals can be
altered through diet, exercise, and psy-
chological factors (e.g., stress) and can
be easily passed on to offspring through
placental transmission (Horackova et
al. 2022). In the end, Homo sapiens ac-
quired a large dopaminergic brain inner-
vation and an impressive intelligence
and thermal tolerance without parallel
among mammals.

Conclusion

Recent findings have confirmed three of
the major tenets of Previc (1999): the key
roles of dopamine in human intelligence;
the expansion of dopaminergic innerva-
tion of brain areas essential to human
cognitive abilities; and the criticality of
dopamine in thermal tolerance. Which
uniquely human traits evolved after the
divergence with chimpanzees is much
better understood than how and when
those traits evolved. But recent findings
also offer a clearer glimpse than ever
before as to what might plausibly con-
stitute the progression of events during
hominin evolution from Homo habilis
to Homo erectus. Almost certainly, the
neurotransmitter dopamine exerts a par-
amount influence on that evolutionary
course.
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