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Abstract:  Modern humans are unique among anthropoids in many key features, including our advanced 
intelligence, large brain-body size, thermal tolerance, and endurance capability. The objective of this 
theoretical review is to update the theory of Previc (1999) postulating the importance of dopamine in 
human evolution by synthesizing newer findings concerning dopamine’s role in human intellectual and 
endurance capabilities. Recent evidence further supports the putative role of dopamine in advanced human 
intelligence (especially cognitive flexibility) and thermal tolerance and endurance. One key breakthrough is 
a collection of recent studies demonstrating a uniquely human dopaminergic innervation of the striatum 
and prefrontal cortex—both essential to human cognition. Another potentially important finding is the 
human-specific mutation of an enhancer to the EN1 gene that controls eccrine gland formation and plays 
a major role in the development of dopaminergic brain systems. A plausible evolutionary scenario is put 
forth in which the enhanced thermal capabilities linked to dopaminergic evolution may have gradually led 
to the enhanced intellects of modern humans.  
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Introduction

Humans are unique among primates and 
even most mammals in several key re-
spects, most importantly our advanced 
intelligence and thermal endurance capac-
ity during exercise. When these various 
traits emerged during hominin evolution 
remains speculative, but the theory pre-
sented in this paper—updated from that 
of Previc (1999)—is that, because of their 
synergistic relationships, most traits must 
have emerged concurrently between~ 2.8 
million years ago (mya) (just prior to the 
emergence of Homo habilis) and ~1.2 mya 
(after the emergence of Homo erectus).

 One key synergy is in the area of hu-
man thermal tolerance, which largely de-
pends on the combined advantages of re-
duced body hair cover and predominantly 
eccrine sweating; one without the other 
would be much less advantageous (Lieber-
man 2015). Other linkages such as biped-
alism and increased stature would further 
enhance thermal tolerance by decreas-
ing exposure to solar irradiance (Wheel-
er 1985), and thermal exchange via the 
eccrine glands would be aided by the in-
creased surface-to-mass ratio (Allen’s rule) 
(Tilkens et al. 2007). In turn, the ability 
to travel long distances in the heat of the 
midday sun would allow early humans to 
scavenge and possibly chase-hunt for meat 
while predators would be resting to avoid 
hyperthermia (Carrier 1984; Bortz 1985; 
Lieberman 2015). The switch to a  tyros-
ine-rich carnivorous diet would increase 
the brain-body ratio due to the combina-
tion of a  larger brain (Previc 1999) and 
reduced intestinal mass characteristic of 
carnivores (Henneberg and Sarafis 1998) 
and lead to a concomitant increase in do-
pamine-mediated advanced intelligence. 

This paper will postulate that all of 
these unique features of humans were 

caused, causal to, or correlated with in-
creases in the neurotransmitter dopamine 
and its precursor tyrosine during human 
evolution. The key roles of dopamine in 
the evolution of advanced intelligence and 
thermal tolerance were previously postu-
lated (Previc 1999), but more recent find-
ings to be reviewed here provide a  more 
complete and compelling synthesis of the 
dopaminergic role in these interleaved 
components of human evolution. For one, 
massive and unique increases in dopamine 
innervation and activity in the human stri-
atum and frontal lobes of humans—key 
areas involved in higher-level cognition—
have been recently found. The impor-
tance of dopamine in speech, abstract rep-
resentations, creativity and a host of other 
key intellectual functions has also been 
further demonstrated (see next section). In 
terms of thermal tolerance, new findings 
have documented the role of dopamine in 
creating hair loss and the genetic overlap 
between the formation of both brain dopa-
minergic systems and eccrine sweat glands 
during human evolution (see “The Role 
of Dopamine in Human Thermal Endur-
ance—New Findings”). And, the impor-
tance of meat consumption—previously 
documented by cut marks on and stone-
flaked tools near animal bones in early 
Homo sites—has been supported by genet-
ic analyses of human tapeworms (Hoberg 
et al. 2001) and pH levels (Beasley et al. 
2015) in the human stomach and gut.

Brain Dopamine and Human 
Intelligence – New Findings 

Dopamine and Human 
Intelligence  

Previc (1999) theorized the importance 
of neurochemical changes involving the 
neurotransmitter dopamine in the evolu-
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tion of human intelligence, highlighting 
six key traits essential to human intel-
ligence and human language—motor 
planning, working memory, cognitive 
flexibility, abstract reasoning, temporal 
analysis/sequencing, and generativity. 
Previc (1999) argued against the role of 
brain size and genetic factors in deter-
mining human intelligence, instead em-
phasizing the importance of epigenetic 
transmission during human evolution. 
He noted the role of prenatal factors in the 
creation of brain lateralization in humans 
(see also Previc 1991), which in most in-
dividuals is associated with profound dif-
ferences in intellectual and other abilities 
between the left and right hemispheres 
despite their identical anatomical size 
and the absence of any known genetic 
influence. The importance of nongenet-
ic factors in intelligence is supported by 
recent genome-wide analyses that have 
consistently shown that only about 5% 
of the variance in intelligence as meas-
ured through standard tests is directly 
attributable to genes (Benyamin et al. 
2014; Davies et al. 2016; Sniekers et al. 
2017; Kaminski et al. 2018), with many 
of the key ones involved in dopaminergic 
synaptic transmission (DeYoung et al. 
2011; Zabelina et al. 2016; Kaminski et 
al. 2018). Indeed, epigenetic and genetic 
influences on just six genes involving the 
synthesis, transmission, breakdown, and 
re-uptake of dopamine at the synapse can 
predict much of the variance in childhood 
intelligence accounted by genome-wide 
models (Kaminski et al. 2018).  

The critical role of dopamine in key 
“executive” abilities such as working 
memory, creativity and language has 
also been confirmed in numerous recent 
studies and reviews: working memory 
(D’Esposito and Postle 2015; Matzel and 
Sauce 2023); creativity/divergent think-

ing (Takeuchi et al. 2014; Lhommee et 
al. 2014; Zabelina et al. 2016); cogni-
tive flexibility and set-shifting (Ko et al. 
2008; Garcia-Garcia et al. 2010); speech 
(Simoyan et al. 2013; Fuertinger et al. 
2018; Rusz et al. 2024); future goals and 
planning (Hart et al. 2024); and time per-
ception and future orientation (Mitchell 
et al. 2018). An underlying component 
of dopamine’s role in most of these abil-
ities is cognitive flexibility—the ability 
to update processing and actions on the 
basis of new information and contexts. 
For example, working memory requires 
constant updating and attentional disen-
gagement when new information is pro-
cessed (Matzel and Sauce 2023), diver-
gent thinking requires switching to new 
mental models and approaches (Palmiero 
et al. 2022), and choice and switching of 
goals is correlated with cognitive flexibili-
ty scores (Leclercq et al. 2023). Cognitive 
flexibility stems from dopamine’s dual 
role in the prefrontal cortex, promoting 
the inhibition required to stop ongoing 
behavior and the excitation required to 
engage in new behavior and processing 
(Mitchell et al. 2018; Di Domenico and 
Mapelli 2023). This inhibition is carried 
out by interneurons in the prefrontal cor-
tex, which are preferentially innervated 
by dopamine in humans (see next sec-
tion).

Unique Dopaminergic Features 
of the Human Brain

As of 1999, there was little direct evidence 
that dopaminergic innervation of the hu-
man brain had selectively increased rela-
tive to other hominids. A  lone study by 
Ikemoto et al. (1997) showed many more 
neurons staining for dopa-decarboxylase, 
the enzyme that converts the precursor 
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L-dopa to dopamine, in the striatum of 
humans relative to monkeys. But the evo-
lutionary significance of this finding was 
unclear since neither chimpanzee nor go-
rilla brains were used as comparisons.

 Beginning in 2009, a series of studies 
carried out by Raghanti and colleagues 
(2009) found large increases in dopamin-
ergic innervation in areas of the human 
brain critical to intelligence. All of these 
studies used stains for tyrosine hydrox-
ylase (TH), the enzyme responsible for 
converting tyrosine to L-dopa, the imme-
diate precursor to dopamine that crosses 
the blood-brain barrier. 

Raghanti et al. (2009) showed sub-
stantial TH staining in human but not 
chimpanzee and gorilla prefrontal in-
terneurons, suggesting selective catecho-
laminergic activity in humans. However, 
because TH is a precursor to noradren-
aline via dopamine, no firm conclusion 
could be drawn as to the selectivity of 
dopaminergic innervation of human pre-
frontal cortex. Raghanti et al. (2016) later 
showed, using TH staining and a meas-
ure of axonal length to neuronal density, 
over twice as much dopaminergic inner-
vation in the medial caudate portion of 
the dopamine-rich human dorsal stri-
atum compared to that of gorillas and 
chimpanzees. The noradrenergic contri-
bution to the TH increase in this case 
could be ruled out because noradrenaline 
concentrations in the human caudate are 
~50 times less than those of dopamine 
(Tong et al. 2006), despite both catecho-
lamines constituting only a  tiny overall 
percentage of the total neurons in the 
caudate nucleus and dorsal striatum, the 
latter containing both the caudate and 
putamen. The reason for the huge differ-
ence in catecholamine concentrations is 
because of the extraordinary arborization 
of dopamine axons emanating from the 

midbrain substantia nigra, with a single 
nigrostriatal axon on average contacting 
up to 75,000 striatal neurons, or 2.7% of 
the total volume of the neostriatum 
of the rat (Matsuda et al. 2009). Tyrosine 
hydroxylase staining in other subcorti-
cal dopamine-rich regions was generally 
greater in humans but less dramatical-
ly so than in the medial caudate nucle-
us. The differences between humans and 
other hominids in dopamine innervation 
in the medial caudate were especially im-
pressive in Raghanti et al. (2016) due to 
the remarkably low variability in human 
TH levels in that region (Raghanti et al. 
2016, Fig. 3). 

Sousa et al. (2017) reported elevated 
TH expression as well as that of dopa-
mine decarboxylase in a  wide range of 
brain areas in humans relative to chim-
panzees. The largest differences overall 
were in the dorsal striatum, but there 
were also major differences in prefrontal 
interneurons, with almost no ape pre-
frontal interneurons staining for TH. 
In yet another study using TH staining, 
Hirter et al. (2021) showed significantly 
greater dopaminergic innervation in the 
ventral striatum (ventral palladium and 
nucleus accumbens) of humans relative 
to chimpanzees and gorillas. Finally, Ma 
et al. (2022) showed, based on the relative 
staining for TH vs. somatostatin (SST), 
that a  remarkable substitution of dopa-
mine for SST occurred during human 
evolution in prefrontal interneurons, 
with only 2.4% of human TH-stained 
interneurons co-localized with SST, in 
contrast to almost 50% in the macaque 
monkey. The percentage of TH staining 
could not even be calculated in the in-
terneurons of chimpanzees and gorillas 
because it was essentially nonexistent 
(Ma et al. 2022), in line with the findings 
of Raghanti et al. (2009) and Sousa et al. 
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(2017). The significance of this intrigu-
ing substitution of SST for dopamine in 
the very interneurons presumed to be 
involved in the key ability of cognitive 
flexibility (see earlier section) remains 
unclear, however.

Doll et al. (2024) in their Figure 1b 
summarize the expansion of dopamin-
ergic systems in the human brain that 
has been documented using TH stain-
ing as well as staining for dopa decar-
boxylase and DAT, which reabsorbs syn-
aptic dopamine back into presynaptic 
neurons. Additional evidence of a  do-
paminergic-intelligence link in humans 
are the significant correlations between 
volume of the dopamine-rich dorsal 
striatum and intelligence (Grazioplene 
et al. 2015; Kaminski et al. 2018). (By 
contrast, overall brain volume predicts 
only a small amount of the variance in 
human intelligence—Pietschnig et al. 
2015.) These findings confirm the previ-
ously documented importance of the in-
tegrity of striatal-frontal circuits (Kling 
and Tucker 1967) and of the striatum in 
particular (Goldman and Rosvold 1972) 
for primate cognitive development. 
Moreover, selective destruction of do-
pamine neurons (Brozoski et al. 1979) 
or blockade of D1 and D2 post-synaptic 
dopamine receptors (Ranganath and Ja-
cob 2016) essentially replicates the cog-
nitive deficits following lesioning of the 
prefrontal cortex.  

In contrast to the expansion of do-
paminergic innervation in the prefron-
tal cortex and striatum, expression of 
other major neurotransmitters such as 
norepinephrine, GABA, glutamate and 
acetylcholine appears either unchanged 
or even reduced in humans (Sousa et al. 
2017; Raghanti et al. 2018). For exam-
ple, TH staining in prefrontal interneu-
rons did not co-locate with staining for 

dopamine beta-hydroxylase (Sousa et al. 
2017), which converts dopamine into 
norepinephrine, indicating that brain 
levels of norepinephrine are conserved in 
hominin evolution. While serotonergic 
innervation may have increased in cer-
tain areas of the human brain (Raghanti 
et al. 2009; Saniotis et al. 2021), there is 
little evidence that serotonin contributes 
to the advanced human cognitive skills 
listed by Previc (1999), as it even opposes 
dopamine action in the striatum and pre-
frontal cortex during learning and mem-
ory (Luciana et al. 1998; Daw et al. 2002; 
Olvera-Cortes et al. 2008). Also, unlike 
dopamine, serotonin in most humans 
does not more densely innervate the left 
hemisphere housing speech and analyt-
ical intelligence, nor can the hyperther-
mic action of serotonin (Tormoehlen and 
Rusyniak 2018) be reconciled with the 
greater thermal tolerance and endurance 
capabilities developed in early hominin 
evolution (see next section). However, 
brain serotonin does foster social coop-
eration and other prosocial behaviors 
(Crockett 2009), which may have facili-
tated the use of language and contributed 
to cultural and technological exchange 
during later human evolution (Raghanti 
et al. 2018; Saniotis et al. 2021).

Finally, the large increases in dopa-
mine innervation of the human prefron-
tal cortex and striatum overall parallel 
the greater dopaminergic activity in the 
left hemisphere of most humans (Lar-
isch et al. 1998; Previc 1999; Cho and 
Strafella 2009)—the citadel of advanced 
human thought with its dominance in 
speech, grammar, motor sequencing, ab-
stract reasoning, analytical intelligence, 
and other unique characteristics of hu-
man cognition (Previc 1999; Simon-
yan et al. 2013; Fuertinger et al. 2018; 
Rusz et al. 2024). At least two of these 
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cognitive abilities—speech and cognitive 
flexibility—have been shown to involve 
dopamine circuits specifically in the left 
hemisphere (Ko et al. 2008; Simonyan et 
al. 2013; Fuertinger et al. 2018). 

The Role of Dopamine 
in Human Thermal 

Endurance—New Findings

It has long been theorized that the emer-
gence of Homo coincided with an en-
hanced ability to endure strenuous ac-
tivity over large distances and tolerate 
heat, useful in persistence hunting or 
scavenging (Carrier 1984; Bortz 1985; 
Wheeler 1985; Bramble and Lieberman 
2004; Lieberman 2015). It is still debated 
whether early humans engaged in chase 
hunting (more likely to be associated 
with endurance running), active scaveng-
ing, or passive scavenging (Pobiner 2020), 
but all of these would have required great 
energy expenditures in the midday heat, 
when other predators would be inactive. 
Regardless of the specific means of pro-
curing the meat, the ability of early Homo 
to tolerate heat would have been critical to 
overcoming these energetic demands. 

Besides its direct role in intellectual 
functioning, a  crucial role of dopamine 
in humans is to prevent hyperthermia 
during endurance activity. Dopamine 
levels are elevated during high-intensity 
and endurance activity (Bortz et al. 1981; 
Marques et al. 1984; Tyler et al. 2023), 
and dopamine cells in tissue slices from 
the anterior hypothalamus, important in 
temperature regulation, are mostly sensi-
tive to temperature increases (Scott and 
Boulant 1984). The importance of dopa-
mine in preventing hyperthermia during 
endurance exercise has been document-
ed in many past studies (e.g., Cox and 

Lee 1980; Marques et al. 1984; Lee et al. 
1985; Bauer et al. 1989), and its bene-
fits in sustaining endurance performance 
have been confirmed by more recent 
ones (Balthazar et al. 2010; Zheng and 
Hasegawa 2016). Recent clinical findings 
have also substantiated the important 
effects of reduced dopaminergic activity 
in hyperthermic syndromes such as the 
Parkinsonism Hyperpyrexia Syndrome 
(Newman et al. 2009; Linares et  al. 
2016; Coon and Low 2018) and the Neu-
roleptic Malignant Syndrome associated 
with anti-psychotic treatments in schizo-
phrenia (Tormoehlen and Rusyniak 2018; 
Hirschbeck et al. 2022), both in contrast 
to the hypothermic effect of disinhibited 
dopamine activity in Huntington Dis-
ease (Weydt et al. 2018). 

How dopamine transiently achieves 
its hypothermic action during endurance 
activity is unclear, since dopamine evi-
dently does not directly control sweating 
(Shibasaki and Crandall 2010); rather, 
hyperhidrosis (excessive sweating) is part 
of the Dopamine Withdrawal Syndrome 
(Chaudhuri et al. 2015). Dopamine-in-
duced vasodilation (Brodde 1982; Brown 
et al. 2007) is one potential mode of ac-
tion, since shunting of the blood to ex-
tremities allows for more effective heat 
transfer (Charkoudian 2003). However, 
dopaminergic effects are complex in 
that they may be temperature depend-
ent—hypothermic at high temperatures, 
hyperthermic at low ones (Brown et al. 
2007)—and it has even been argued that 
there are beneficial effects of brain dopa-
mine on endurance activity aside from its 
effects on temperatures (e.g., Balthazar 
et al. 2010; Zheng and Hasegawa 2016, 
Fig. 2). Previc (1999) speculated that do-
pamine’s role in motor behavior may ac-
tivate a  caudate-hypothalamic axis (Lee 
et al. 1985) during exercise that enhanc-
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es oxygen metabolism and delivery in 
advance of an actual rise in temperature. 

 Previc (1999) proposed that the en-
hanced endurance capability of humans 
gave rise to a surge in brain dopamine dur-
ing early human evolution, mainly due to 
the increase in meat consumption, which 
would have provided a substantially great-
er amount of tyrosine in the diet. The ev-
idence for increased meat consumption 
beginning around 2 mya is compelling 
(Ferraro et al. 2013; Zink and Lieberman 
2016; Pobiner 2020), although sampling 
biases may distort some of the archaeo-
logical findings (Barr et al. 2022). The ev-
idence for meat-eating includes: 1) stone 
artifacts and bone cut marks in close prox-
imity to early human remains, suggesting 
meat extraction from carcasses (Pobiner 
2020); 2) the reduced size of the modern 
human large intestine (Henneberg and 
Sarafis 1998) and an increase in stomach 
acidity (Beasley et al. 2015), both associ-
ated with carnivorous diets; 3) changes 
in dentition (smaller teeth, especially ca-
nines; more bite strength in molars) that 
could have reflected the consumption of 
softer, processed meat (Dean and Cole 
2013; Zink and Lieberman 2016); and 
4) the evolution of human-specific tape-
worms linked to African fauna around 1.7 
mya (Hoberg et al. 2001). The increased 
tyrosine in the diet of early Homo would 
have major consequences in that it could 
have stimulated growth hormone (Tam et 
al. 2020), thereby increasing stature and 
brain volume (Yuan et al. 2020), which are 
significantly correlated (Taki et al. 2012). 
The effect of meat consumption on height 
has been demonstrated in past as well as 
recent large-scale studies (Suzuki 1981; 
Desmond et al. 2021; Mosites et al. 2017). 
The enhancement of growth hormone by 
tyrosine may be mediated by dopamine, 
although not all evidence is supportive. 

But it is clear that dopamine itself, in the 
brain and elsewhere, is dependent on ty-
rosine availability (Montgomery et al. 
2003), as is cognitive capability, especially 
cognitive inhibition (Bloemendaal et al. 
2018; Hase et al. 2015; Kuhn et al. 2019).

Despite dopamine’s important role 
in thermal tolerance, a key issue was left 
unanswered in Previc (1999): How could 
brain dopamine have been a major force 
in the evolution of human endurance if 
it was dependent on that endurance ca-
pability and the consequent increase in 
meat consumption? A possible solution 
to this conundrum is the recent find-
ing that the ENGRAILED gene (EN1), 
a transcription factor that facilitates the 
formation of eccrine sweat glands (Aldea 
et al. 2021; Aldea and Kamberov 2022), 
underwent an evolutionary change in 
humans due to repeated human-specif-
ic mutations of a key enhancer, ECE18. 
These mutations likely contributed to 
increasing eccrine density in humans 
~10-fold relative to chimpanzees (Al-
dea and Kamberov 2022), which facili-
tates the phenomenal ability of humans 
to eliminate up to one liter of water per 
hour (Smith et al. 2021) and 12 liters per 
day by means of evaporative cooling in 
the skin. It is generally acknowledged 
that 90% of heat loss occurs through the 
skin, mostly by radiation and convection; 
however, evaporative cooling through the 
eccrine glands becomes more critical at 
high temperatures (Wang et al. 2016). 
What is intriguing about the EN1 evo-
lutionary progression is that this gene 
is also important in the development of 
midbrain dopaminergic systems (Simon 
et al. 2004; LePen et al. 2008; Nordstro-
ma et al. 2018; Nouri and Awatramani 
2017), the primary source of dopamine 
in the forebrain. EN1 is part of a  con-
stellation of genes and pathways with 
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many diverse effects in the human body 
but which all interact to influence both 
sweating and exercise tolerance as well as 
the formation and sustenance of brain do-
pamine systems. These include NURR1 
(Amoasii et al. 2019), the WNT family 
(Alves dos Santos and Smidt 2011), and 
especially FOXA1 (Ferri et al. 2007; Cui 
et al. 2012), the latter of which helps reg-
ulate both EN1 and NURR1 (Ferri et al. 
2007). However, only EN1 via mutations 
of its enhancer ECE18 is confirmed to 
have undergone a major functional alter-
ation in humans (Aldea et al. 2021). 

Given the fact that each of these 
genes has multiple regulatory functions 
in human development, it is possible 
that the links between these key dopa-
minergic genes and sweating are coinci-
dental. Or, the EN1 mutation may have 
affected dopamine and eccrine sweating 
independently, since eccrine function is 
largely controlled by cholinergic rather 
than dopaminergic transmission (Shiba-
saki and Crandall 2010). Regardless, mu-
tations of an enhancer to a  major gene 
regulating both sweat gland formation 
and dopaminergic brain development 
offers a tantalizing clue as to how dopa-
mine and thermal tolerance linked up 
during human evolution. 

In contrast, the reduced body hair 
cover may have been more directly in-
fluenced by dopamine in that dopamine 
agonists are known to decrease hair cov-
er by stimulating catagen (Langan et al. 
2013), which prevents the transforma-
tion of fine vellus hair into fully mature 
terminal hair. The role of dopamine in 
hair loss is demonstrated by the hair 
loss in >50% of all Parkinson’s patients 
receiving dopaminergic therapy (Lee et 
al. 2024). Decreased hair cover would 
combine with increased dopaminergic 
vasodilation (Brodde 1982; Brown et al. 

2007) to dissipate heat through the skin 
via the eccrine glands. A  final thermal 
advantage possibly conferred by the ty-
rosine-dopamine link is the elongation 
of the human body, which would de-
crease solar irradiance and increase sur-
face-to-mass ratio, thereby enhancing 
dermal heat transfer. While Wheeler ’s 
original theory posited that bipedalism 
per se—which preceded the evolution 
of the Homo genus—increased thermal 
tolerance and endurance, this remains 
a  contentious issue (see David-Bar-
rett and Dunbar (2016) vs. Ruxton and 
Wilkinson (2011)). But bipedalism as-
sociated with an elongated body would 
certainly have provided a greater means 
of dissipating heat, in line with Allen’s 
rule. Allen’s rule is supported by both 
experimental studies of limb length 
and metabolism (Tilkens et al. 2007) as 
well as the negative association between 
body height and risk of heat stroke (Tay-
lor et al. 2024). 

Many other changes in the human 
physique, discussed by Bramble and 
Lieberman (2004), may have simply 
been associated with the elongation of 
the body in humans. Others such as 
changes in dentition and the shape of 
the foot (Bramble and Lieberman 2004; 
Zink and Lieberman 2016) have less 
clear evolutionary origins, but epigenet-
ic factors may have played a role in these 
as well (Quinn 2012; Khalaf et al. 2022). 
One adaptation that is more likely to 
have coincided with the loss of terminal 
body hair is the increased melanin con-
tent of the skin, which would have offset 
the dangers of increased solar irradia-
tion due to the loss of hair cover (Jablon-
ski 2021). Without such pigmentation, 
folate metabolism would be seriously 
impaired, threatening hominin repro-
ductive success (Jablonski 2021; Lucock 
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2023). Melanin synthesis is influenced 
by many factors, but it is ultimately de-
pendent on tyrosine and its conversion 
to L-dopa and then dopaquinone (Ma-
randuca et al. 2019), consistent with ev-
idence that L-dopa treatment for Parkin-
son’s disease has stimulating effects on 
melanogenesis (Bougea et al. 2019). In 
line with the hypothesized link between 
skin pigmentation and reduced hair cov-
er during early Homo evolution, signifi-
cant inverse correlations exist between 
skin pigmentation and hair follicle den-
sity and hair length in extant humans, 
with the former accounting for over 28% 
of the variance in follicle density (Dhug-
ga et al. 2014).

Implications for Human 
Evolution

The linkage between EN1 and associ-
ated genes and dopaminergic brain de-
velopment suggests that the mutations 
of the EN1-enhancer ECE18 may have 
been a catalyst for ensuing evolutionary 
changes in early Homo. Several ration-
ales support the view that the enormous 
increase in eccrine sweat glands oc-
curred before many other evolutionary 
changes such as decreased hair cover 
and increased stature. Of the three fac-
tors unique to human thermal tolerance, 
elongation of the body occurred later in 
the period from 2.5 to 1.5 mya, based on 
the skeletal record (Will et al. 2017). The 
other factor—reduced hair cover due to 
a retraction of terminal hair—may have 
occurred secondarily as well, for in the 
absence of copious sweating capabilities 
a loss of hair cover would have exposed 
humans to damaging solar radiation, 
with mixed thermoregulatory effects 
(David-Barrett and Dunbar 2016). (By 

contrast, the benefits of an increase in 
eccrine sweat glands would also have 
been limited without a concomitant de-
crease in hair cover (Lieberman 2015), 
but at least expanded eccrine sweating 
by itself would not have proven harm-
ful). An additional reason for believing 
in the primacy of eccrine gland evolu-
tion is that greater eccrine activation 
and perhaps density is associated with 
hotter climates (Best and Kamilar 2018; 
Best et al. 2019), and the climate of the 
savanna was hotter at the beginning of 
hominin evolution than after 2.5 mya, 
when worldwide climate underwent 
a  cooling trend (Stanley 1995). On the 
other hand, as the climate cooled and 
dried and forests in East Africa gave way 
to grassland, arboreal creatures such as 
the Australopithecines would have had 
more trouble adapting to the new cli-
mate than early Homo, the latter having 
a  greater surface-to-mass area, reduced 
hair cover, and a  more advantageous 
foot structure (Bramble and Lieberman 
2004). Because EN1 influences both 
eccrine and hair follicle development, 
it cannot be ruled out that the eccrine 
increase and loss of hair cover occurred 
simultaneously; however, hair follicle 
density per se has not changed in hu-
mans relative to chimpanzees (Kamberov 
et  al. 2018),  and there is no evidence 
that EN1 promotes the catagen-induced 
loss of terminal hair.

One plausible evolutionary scenario 
is portrayed in Figure 1. An initial genet-
ic adaptation involving ECE18 and the 
EN1 gene could have independently in-
creased eccrine sweat gland density and 
dopaminergic brain innervation. The lat-
ter’s elevation would then contribute to 
reduced human hair cover and increased 
peripheral vasodilation to further en-
hance human thermal tolerance.
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Figure 1. A hypothetical scenario for the rise of human intelligence and endurance capabilities in early 
human evolution. A mutation of the ECE18 enhancer to the regulatory gene EN1 could have expanded 
both eccrine gland density and brain dopaminergic systems.  In turn, dopamine would facilitate com-
plementary heat loss mechanisms that allowed for increased endurance capabilities and the ability of 
early humans to exploit the African savanna for procurement of meat. The tyrosine and other proteins 
contained in the more carnivorous diet would lead to an increase in brain size, height, melaninization 
of the skin, and further increases in brain dopamine

This facilitated the greater exploita-
tion of the savanna grasslands by permit-
ting travel over longer distances under 
thermally stressful conditions to procure 
meat, rich in tyrosine. The increase in 
tyrosine would have further increased 
brain dopamine, physical stature, and 
brain size along with increasing the mel-
anin content of the human skin to pro-
tect it against the increased solar absorp-
tion due to the loss of hair cover. Once 
begun, the entire cyclical process could 
have been a  gradual one, as suggested 
by Jablonski (2021, Fig. 1). A gradualist 
scenario is consistent with evidence that 
dopamine levels can be altered by epige-
netic mechanisms and easily traverse the 
placenta, steadily accumulating over gen-
erations (see Previc 2009). The gradualist 

view of dopaminergic expansion is also 
consistent with recent re-appraisals of 
the cognitive capabilities of Homo erec-
tus and archaic humans, given evidence 
of advanced lithic technology, abstract 
designs, food processing, and the use of 
fire dating back hundreds of thousands 
of years and, in some cases, even longer 
(Bednarik 1995; DeLouize et al. 2017; 
Clark and Henneberg 2021).

The putative rise in brain dopamine 
in conjunction with eccrine gland ex-
pansion and a  less hairy and darkened 
skin is necessarily speculative and can-
not yet be linked to a specific timeframe, 
since all scientists can currently deci-
pher about soft tissue changes during 
human evolution is the difference be-
tween extant humans and chimpanzees. 
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That divergence is believed to have oc-
curred about 6–7 mya, and each species 
has evolved since then. The presence of 
the ECE18 mutations in the Neander-
thal genome might push its existence 
as far back as back as 800 kya and per-
haps somewhat plausibly even to the 
emergence of Homo erectus, but in the 
progression from Homo habilis to Homo 
erectus all that can be determined from 
the fossil and archaeological record is 
that more advanced tools were used to 
extract meat from carcasses, elongation 
of the body occurred, cranial capacity 
increased, and dentition evolved with 
ingestion of softer foods (Dean and Cole 
2013). Aside from some limited genet-
ic evidence related to tapeworm muta-
tions, suggesting meat-eating as early as 
~2 mya (Hoberg et al. 2001), there is lit-
tle else available to capture precisely the 
evolutionary past other than theoreti-
cal analyses. Chemical composition in 
bone—especially relative zinc isotopes 
(Z66 to Z64) and carbon and nitrogen 
amino acid isotopes—offers promise in 
determining when greater carnivory oc-
curred (Jaouen 2016; Jaouen et al. 2022; 
Larsen 2022), but these measures are 
difficult to interpret with remains dat-
ing back millions of years. So, definitive 
findings concerning when the putative 
rise in dopamine first occurred during 
hominin evolution is still lacking.

According to Previc (2009), the hom-
inin progression leading from Homo ha-
bilis to Homo erectus was a major step 
in establishing the “dopaminergic mind”, 
but it was not the final stage. Despite 
large migrations of Homo erectus to dif-
ferent latitudes and regions with vastly 
different climates along with the thermal 
effect of clothing wear beginning around 
170 kya (Toups et al. 2011), human in-
telligence, brain size, meat-eating, body 

height, sweat gland density, and many 
other distinguishing features of modern 
humans never retreated to pre-erectus 
levels. It may be presumed, as Previc 
(2009) argued, that dopamine levels in 
the human lineage continued to increase 
to the present, possibly epigenetically, 
as dopamine levels in individuals can be 
altered through diet, exercise, and psy-
chological factors (e.g., stress) and can 
be easily passed on to offspring through 
placental transmission (Horackova et 
al. 2022). In the end, Homo sapiens ac-
quired a large dopaminergic brain inner-
vation and an impressive intelligence 
and thermal tolerance without parallel 
among mammals.

Conclusion

Recent findings have confirmed three of 
the major tenets of Previc (1999): the key 
roles of dopamine in human intelligence; 
the expansion of dopaminergic innerva-
tion of brain areas essential to human 
cognitive abilities; and the criticality of 
dopamine in thermal tolerance. Which 
uniquely human traits evolved after the 
divergence with chimpanzees is much 
better understood than how and when 
those traits evolved. But recent findings 
also offer a  clearer glimpse than ever 
before as to what might plausibly con-
stitute the progression of events during 
hominin evolution from Homo habilis 
to Homo erectus. Almost certainly, the 
neurotransmitter dopamine exerts a par-
amount influence on that evolutionary 
course. 
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