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Mismeasurement of the virtual human body: 
analysing error of landmark acquisition
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AbsTRACT: Modern physical anthropology increasingly employs non-invasive methods that use 3D models 
representing the human body. Frequently, these are 3D models of a person’s physical appearance, i.e., face 
or body. A traditional approach to analyse these records is to process discrete points (landmarks, feature 
points) collected manually on the model surface. The digitization of landmarks and associated errors have 
been sufficiently studied in the context of the human face, due to its functional and aesthetic importance. 
However, other parts of the human body have not received the same level of attention.

The aim of the present study was to quantify the error of body landmarks when collected in 3D full-
body models and to explore how it relates to other model properties, such as a demographic and somatic 
indicators. 

The study tested two datasets of 10 body landmarks acquired in 60 models (32 males and 28 females). 
The data acquisition was carried out during the time span of 14 days. The magnitude of the digitization 
error for each point was acquired and tested between groups defined according to their anatomical location 
(shoulders, arms, legs; torso and limbs or body side), sex, age, height and body type.

The results of this study showed that the error of digitising landmarks in a 3D model was greater 
compared to the error reported in the literature when acquiring landmarks on the human body. The 
digitization error was independent of participants’ age, sex, height, and body type but was correlated with 
the anatomical location, where the upper chest, neck, and back on the knee yielded the highest digitization 
errors. In addition, this study showed that landmarks located on the shoulders and arms exhibited an error 
which was correlated negatively with the volume of the lower and upper half of the body and positively 
with the body depth. 
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Introduction

The rapid development of imaging and 
information technologies in the last two 
decades has enabled to extend the study 
of the human body into a digital environ-
ment. The key prerequisite for conducting 
a virtual body assessment is the accurate 
transfer of the human body properties, 
such as size, shape, colour, to the virtual 
workspace. Generally, the result of such 
a  transfer (via 3D optical or laser scan-
ning, or single-camera photogrammetry) is 
a three-dimensional model, also referred to 
as a polygonal model or 3D mesh (Daanen 
and Ter Haar 2013). Unlike traditional ap-
proaches, such as 2D images, photographs, 
or conventional measurements, three-di-
mensional models encompass complex 
morphological details about the human 
body, which also includes the depth in-
formation which is, otherwise, lost when 
using the traditional two-dimensional im-
agery. As an additional benefit, three-di-
mensional body models can be easily 
shared in the manner which is identical to 
any digital data. Importantly, their qualita-
tive and quantitative properties may be ex-
plored, once or repeatedly, without requir-
ing direct human contact or sometimes 
tedious and time-consuming repeated 
interactions with the subject under study 
(Kullmer 2008; Craik and Collings 2022).

To date, the quantitative variation of 
the human body represented by three-di-
mensional virtual models have been ex-
amined by a variety of traditional as well 
as advanced approaches, such as tradi-
tional measurements, curves, or surface 
comparison (Ben Azouz et al. 2008; Ur-
banová 2016; Čuta et al. 2024). Howev-
er, the most frequent are studies of 3D 
models by means of discrete points, i.e., 
landmarks, collected manually or auto-
matically on the model surface (Bromiley 

et al. 2014; Urbanová et al. 2018). The 
exact position of the collected landmarks 
within the virtual workspace is tradition-
ally expressed by the Cartesian x, y, z co-
ordinates (Bookstein 1991). These coor-
dinates are used as start and end points 
to calculate inter-landmark distances, 
compatible to linear measurements (Ca-
ple and Stephan 2016), or to determine 
ratios, indices, or angles (Sforza and 
Ferrario 2006). In more complex data 
processing, they function as registration 
points to align and superimpose three-di-
mensional models (Charlier et al. 2014). 
Subsequently, in post-registration anal-
ysis, they serve as variables related to 
shape and/or size (Zelditch et al. 2012).

The quantitative methods employed 
to study human variation in 3D virtual 
body features can be considered accurate 
and meaningful only on the condition 
that data are collected cautiously, reliably 
and without bias. Therefore, to ensure 
an optimal level of accuracy, repeatability 
and reproducibility of collected landmarks 
is paramount (Jones and Rioux 1997). 
There are four approaches to quantify-
ing acquisition error when discrete points 
are collected –  1)  superimposition-based 
method, 2) simplified residual method, 
3) inter-landmark distance method, and 
4) point-to-centroid method. The first 
approach involves the use of two or more 
sets of digitized landmarks aligned using 
a registration method, such as Generalized 
Procrustes Analysis (GPA), Generalized re-
sistant-fit analysis or the three-point regis-
tration (Slice 1996). The registration min-
imizes the spatial differences between the 
corresponding points based on the selected 
measure of deviation, e.g., least-squares, 
medians etc. Then, direct distances be-
tween corresponding points are calculat-
ed. This determines the acquisition error 
at the given point, while the sum of in-
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ter-point distances comprises the total er-
ror. Alternatively, under the condition that 
the sets of landmarks are aligned to three 
body axes, deviations relative to x, y, z axes 
can be calculated. This may further clarify 
the direction in which the error is imposed 
(von Cramon-Taubadel et al. 2007). 

The second approach is an alternative 
of the first approach. It involves quantify-
ing acquisition error from sets of landmark 
configurations collected repeatedly, while 
keeping the position of the 3D model un-
changed and omitting the registration pro-
cess (Arnqvist and Mårtensson 1998). 

In the third approach, digitization 
error is quantified using modified meth-
odology from an international standard 
(ISO  20685-1:2018), where two sets of 
measurements calculated from land-
marks are confronted. The difference be-
tween the first and second measurement 
is calculated to determine the average 
measurement error and the measurement 
estimation error. Unlike the superimposi-
tion approach, this technique is more suc-
cessful in localizing the source of error as 
superposition can dilute the error between 
landmarks (Ross and Williams 2008).

Ultimately, the fourth approach for er-
ror assessment uses the position of the cen-
troid (i.e., the centre of a landmark configu-
ration) and determines distances from the 
centroid to each point of the configuration. 
The digitization error is then expressed as 
the difference between the distances de-
rived from the first and the second set of 
points (von Cramon-Taubadel et al. 2007; 
Navarro et al. 2019). This approach is par-
ticularly suited for determining the error of 
closely related landmarks, such as outlines 
(Chen et al. 2002). As distance-based ap-
proaches, both the third and fourth meth-
ods require no registration of landmarks.

While there ought to be maximum ef-
fort to achieve minimum measurement 

or data acquisition errors, there is little 
doubt that such intentions are frequently 
influenced by a number of external and 
internal factors. External factors include 
factors inherent to the digitization pro-
cess. These include the software used to 
collect data, workplace, work schedule, or 
time restrictions. It has been shown that 
in a  less intuitive virtual environment, 
working with digital data increases the 
time requirements, and when combined 
with time pressure it may result in errors 
(Jurda et  al. 2019). Generally, acquiring 
experience and skills in digital data pro-
cessing leads to increased accuracy (Kou-
chi and Mochimaru 2011). 

In contrast, internal factors influenc-
ing data accuracy and reliability include 
the type, position, and definition of the 
landmark (or measurement) and the char-
acteristics of the 3D model on which the 
data collection is conducted. These factors 
encompass demographic indicators, such 
as age and biological sex as well as body 
somatic indicators (Muehlenbein 2010). 
According to Bookstein’s classification 
system (1991), type II and III landmarks 
are particularly sensitive to acquisition 
errors. These points are defined as the 
extremes of curvatures or points furthest 
along (or away from) some structure or the 
standard anatomical axis (Benfer, 1975; 
Zelditch et  al. 2012). In traditional cali-
per-based anthropometrics, these land-
marks are identified tentatively by tracing 
the vicinity of anatomical spots until the 
maximum distance is reached and reg-
istered. Consequently, “instrumentally 
determined” or “maximum width” land-
marks, such as the zygion or the vertex, 
often exhibit the greatest error in only one 
direction (Katina et al. 2016).

Studies examining the association 
between the error of landmark place-
ment and body characteristics are scarce, 
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despite potential interference from sex-re-
lated variations in body posture and com-
position, fat distribution, muscle develop-
ment, or the tendency toward lower limb 
swelling. Among the few published stud-
ies, Hara et al. (2016) found no influence of 
participants’ age and sex on digitization er-
ror in two-dimensional records. Similarly, 
for faces, the influence of sex (Daboul et al. 
2018) and age (Ferrario et  al. 2022) was 
investigated providing negative results. 
The effect of body type has primarily been 
quantified for automatic digitization sys-
tems, where automatically digitized land-
marks exhibited errors correlated with dif-
ferent or atypical body shapes (Devarajan 
and Istook 2004).

There is a  wide range of digitization 
error that is generally tolerated without 
questioning the integrity of the published 
studies. Similarly, there is no consensus on 
how large the error is acceptable (Ulijaszek 
a  Kerr 1999; Ryan-Stewart et  al. 2022). 
The published work agree that the thresh-
old of acceptable error varies with the size 
of the body or body parts for which the 
error is quantified (Ruescas-Nicolau et al. 
2024). While a  larger error is acceptable 
for the gross anatomical parts, the same 
error for the finer body elements has a sig-
nificant effect on acquired results. In tra-
ditional somatometrics, such relevance 
is underlined by expressing the  mea-
surement error relative to the taken 
measurement. Of the human body parts, 
the human face is the most frequent ana-
tomical site to quantify acquisition error. 
Fourie et al. (2011) reported a tolerated ac-
quisition error of 1.5 mm when collecting 
standard facial points. Sukno et al. (2015) 
obtained an overall error of 2.3 mm, with 
averages per landmark below 3.4 mm for 
14 tested points and within 2 mm for half 
of them. In addition to the extent of an 
error, identifying its direction provides 

insights into data variation. For instance, 
Utermohle and Zegura (1982) highlight-
ed directional trends in quantitative data 
acquisition, observing that in traditional 
craniometrics, the second set of repeat-
ed measurements tended to yield larger 
values than the initial measurements.

One of the principles related to point 
accuracy was outlined by Prokopec pub-
lished in Fetter et al. 1967. Here, an error 
of 10 mm is reported as tolerable for meas-
uring person’s height, 5 mm for measuring 
dimension on body and 1 mm for measur-
ing on human face. In this case, the lim-
its refer to when the body measurement is 
taken directly on the participants without 
the use of 3D models. Conversely, Uli-
jaszek and Kerr assessed the acquisition 
error on 3D models, revealing a tolerance 
of 3% for smaller measurements (e.g., 
lengths of limbs and head) and 5% for 
larger dimensions (e.g., stature). Alterna-
tively, standards, such as ISO 7250-1 es-
tablish benchmarks for basic human body 
measurements in technological design 
with a tolerable measurement error limit 
of 5 mm. Similarly, ISO 20685-2:2015, 
which sets standards for 3D scanning and 
dimensional measurements on 3D mod-
els representing the human body, where 
a  measurement error of 9 mm for long 
measurements over 10 cm (body height, 
torso height, limb length) is tolerated, 
while for small measurements up to 10 cm 
(wrist width, ankle width, finger length), 
an error of 1 mm is acceptable. 

The aim of this study is three-fold: 
1) quantify the accuracy of collecting 
10  landmarks on the 3D models repre-
senting the human body and compute 
contributions of each landmark to the 
total error, 2) explore the effect of demo-
graphic factors, such as age and sex, of 
the participants on the acquisition error, 
3) assess the extent of somatic factors 
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(e.g., body type, body size, landmark lo-
cation, shape and size and influence to 
measurement of dimensions) on the ac-
quisition error.

Material

The study sample consisted of 60 vol-
unteers, 32 males and 28 females aged 
from 25 to 76 years (with the average of 
47 years) at the time of data acquisition. 
For males, the average age was 45 years 
(median = 44 years), while for females, 
the sample averaged at 49 years (medi-
an  = 48 years). An analysis of age dif-
ferences between sexes was performed to 
assess the sample’s demographic balance, 
and no statistically significant differenc-
es were found across the age categories 
20–29, 30–39, 40–49, 50–59, and 60–76 
(Chi-squared test, p= 0.06).

All participants were recruited from 
the CardioVision Brno 2030 project at the 
International Clinical Research Centre 
(ICRC), St Anne’s University Hospital in 
Brno (FNUSA), Czech Republic. The study 
was approved by the Ethics Committee of 
St. Anne’s University Hospital in Brno. 

Methods

Scanning
Three-dimensional digital body models 
were obtained using a  full-body scanner 
[TC]². The full-body scanner [TC]² con-
sists of a booth with an entrance covered 
with a curtain. Inside the booth, there are 
16 sensors with a total of 32 cameras, i.e., 
two cameras per sensor. In order to ensure 
maximum accuracy, the scanner was cal-
ibrated and checked for errors daily. The 
participants were scanned in uniform un-
derwear in a standing position with their 
lower limbs apart and upper limbs spread 
out. The standardized body posture was 

achieved using marks placed on the floor in-
dicating the position of feet and height-ad-
justable handles for gripping and setting of 
the correct position of the hands.

The pointing accuracy of the scanner 
is less than 6 millimetres, and the circum-
ferential accuracy is less than 1 cm. The 
density of the grid of points of the scanner 
is smaller than 2 by 2 millimetres. The 
density of data per square centimetres 
is 75 points, and the density of points 
throughout a scan is from 600 000 up to 
one million points (www.tc2.com, 2021). 
The primary output from the scanner is 
a point cloud representing a three-dimen-
sional body model in Virtual Reality Mod-
elling Language (.wrl) format.

Scan post-processing 
In total, 60 three-dimensional body 
models were recorded. Final adjust-
ments were carried out in the GOM 
Inspect and Meshlab program. The pri-
mary model in wrl format consisted of 
8 separate, unconnected parts (head, 
torso, both arms, upper parts of both 
legs, and ankles) with a number of holes 
present between these parts. The format 
was first converted to a point cloud (xyz 
format) in GOM Inspect and then tri-
angulated into a  mesh (stl format and 
finally the obj format) in Meshlab. This 
ensured that the eight separate parts 
were connected into one model and all 
holes were closed properly. 

Due to the lower quality of the mesh 
in the head area, the meshes were man-
ually processed by cutting out the heads 
with necks in the virtual environment. 
They were checked for errors (func-
tion: Eliminate Mesh Errors) and holes, 
caused by mesh error (function: Close 
Holes) and reduced to the final resolu-
tion of 45k – 50k vertices. In areas where 
originally separate parts of the model 
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overlapped, different densities of vertices 
emerged, therefore, a  reorganization of 
polygons (GOM Inspect) was performed. 
This achieved a  consistent distribution 
of vertices within the polygonal mesh.

Landmarks
For each model, a  set of 10 landmarks 
(2  unilateral, 8 bilateral) was collected 
following definitions as described in Ta-
ble 1 and Figure 1. 

Table 1. Landmarks tested in this study

Name Definition

Acromiale dx ACR_R The points located at the superior and external border of the ac-
romion process with the subject standing erect with arms relaxed.Acromiale sn. ACR_L

Suprasternale SPS The point located on the upper edge of the sternum in the 
mid-sagittal plane.

Radiale dx. RAD_R The point located at the tip of the elbow.

Radiale sn. RAD_L

Lateral part of the 
popliteal fossa dx.

GEN_R The points located on the lateral part of the shallow depression 
located at the back of the knee.

Lateral part of the 
popliteal fossa sn.

GEN_L

Outer ankle dx. MALL_EX_R The points located on the tip of the outer ankle.

Outer ankle sn. MALL_EX_L

Cervicale CVR Protrusion of the 7th cervical vertebra.

Fig. 1.  Landmarks: right and left acromiale (ACR_R, ACR_L), suprasternale (SPS), right and left radiale 
(RAD_R, RAD_L), right and left lateral part of the popliteal fossa (GEN_R, GEN_L), right and left outer an-
kle (MALL_EX_L, MALL_EX_R and cervicale (CVR). Linear distances between landmarks: ACR_R-ACR_L 
(1), ACR_R-RAD_R (2), ACR_L-RAD_L (3), ACR_R-GEN_R (4), ACR_L-GEN_L (5), GEN_R-MALL_EX_R 
(6), GEN_L-MALL_EX_L (7), GEN_R-GEN_L (8), MALL_EX_R-MALL_EX_L (9), CVR-SPS (10)
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Landmarks were selected based on sever-
al criteria: 1) clear definition with a sup-
posedly high level of repeatability, 2) dis-
tribution throughout the entire body, 
allowing for a comprehensive description 
of the human body (Simmons and Istook 
2003; Atamtürk et al. 2019), and 3) the 
clarity of the landmark on the model 
without texture.

Methods of digitization error analysis
The dataset of 10 landmarks was dig-

itized twice for each model. Data digi-
talisation was conducted with a 14–day 
interval between the first and second ses-
sion. Digitalisation error was quantified 
from the sets of landmark configurations 
collected repeatedly while the 3D model 
position remains unchanged. The error 
was calculated as the difference, i.e., di-
rect distance between the first and second 
set of digitized landmarks corresponding 
to each other and obtained on one iden-
tical model. In addition, the landmark 
displacement according to the x, y, and 
z  axes was determined. The x-axis cor-
responded to the anterior-posterior body 
direction, the y-axis aligned with the 
medial-lateral direction, and the z-axis 
matched the up and down direction.

Normality of data distribution was 
tested using the Shapiro-Wilk test and 
a  normal probability plot. Descriptive 
statistics including mean, maximum, 
minimum, and standard deviation were 
calculated. Alternatively, the median, 
maximum, minimum, and quartile 
range were used for the results when the 
data distribution did not meet normality 
requirements.

A  digitization error was detected for 
each landmark and landmark location. 
To test the effects of the landmark loca-
tion, the data set was divided into groups 
according to anatomical location: those 

located on the 1) torso and 2) limbs, and 
in concordance with the right and left 
side of the body (Fig. 1). In addition, in-
dividual’s sex, height, body type, body 
shape, and body size were tested for their 
influence on data digitalisation. For each 
3D model, body type was assessed vis-
ually by classifying the 3D model into 
one of three pre-defined classes. To create 
categories for body type assessment, BMI 
was calculated from height and weight 
of 208 individuals from an independent 
dataset (archived at the home institu-
tion). These individuals were further 
grouped into three categories, and 3D 
models representing individuals with the 
lowest and highest BMI for a given cate-
gory were used as templates, built sepa-
rately for men and women (Fig. 2). The 
pair of templates per category defined 
the  range within which each individual 
with unknown BMI was assessed. To test 
repeatability of the approach, intra-ob-
server and interobserver errors were de-
termined. When testing an intra-observ-
er error, only one individual was assigned 
to a different category. When interobserv-
er error was determined, five individuals 
were classified differently.

In contrast, body size was described 
as the volume of a prism calculated from: 
1) the height of the individual (cm), meas-
ured on the day of the scan at CardioVi-
sion (ICRC, FNUSA); 2) the width of the 
body at the abdomen and hips, defined 
as the dimension between the two most 
lateral points in this area (cm), measured 
on the model; and 3) the anteroposteri-
or dimension at the abdomen, defined 
as the distance between the most ventral 
point on the abdomen and the most dor-
sal point on the back, in a plane parallel 
to the imaginary ground on which the 
individual is standing (cm), measured on 
the model (Fig. 3).
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Fig. 2. Model examples representing 3 categories of body types for both males and females: Normal range 
(1), Overweight (2), Obese (3) 

Fig. 3. Two dimensions of body type, the largest anteroposterior dimension of the body in the abdomen (1) 
and the largest width of the body in the hips (2) 

To examine the impact of body shape, 
the set of landmarks collected at the first 

session underwent alignment process via 
Generalized Procrustes Analysis (GPA) 
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while the size standardization was first 
omitted (i.e., shape and size variables 
were acquired), and then included (i.e., 
only shape variables were acquired). Prin-
cipal component analysis was performed 
on both registered data sets (size-present, 
size-invariant), from which the 4 first 
components were selected and tested 
against the digitization error. 

In addition, the impact of errors on 
linear inter-landmark distances were 
explored. A  total of 10 linear distances 
(Fig.  1) were computed for both sets of 
collected landmarks and absolute differ-
ences between the first and the second 
set were computed. The error of mea-
surements was expressed in terms of 
mean absolute difference (MAD), me-
dian absolute difference (MedAD), and 
technical error of measurement (TEM). 

Effects of the position of landmarks, sex 
and somatotype based on BMI were test-
ed with the nonparametric Kruskal-Wallis 
test and median test, and the Mann-Whit-
ney U  test. The relationship between 
the error and quantitative parameters 
(body height, body size, error of linear 
measurements, shape and size principal 
components) was expressed in terms of 
the non-parametric Spearman’s rank cor-
relation coefficient. Principal component 
analysis and visual outputs were created 
in R Studio software using the morpho 

package (v2.12; Schlager 2017) and geo-
morph (v3.3.2; Adams et al. 2021).

To test the effect of symmetry, the 
difference in digitization error between 
the right and left landmarks at paired 
points was calculated and tested using 
the Wilcoxon pairwise test. Difference 
in symmetry, between the landmarks 
on right and left side of the body in the 
digitization error was also tested for its 
association with shape and size using the 
Spearman’s rank correlation coefficient.

Results

Digitization error
The errors of the digitized landmarks 
averaged between 11.88 and 18.65 mm 
(with medians ranging from 10.21 to 
16.41 mm) (Tab. 2). The maximum 
digitization errors were observed for 
landmarks located on the neck (CVR), 
the back of the knee joint (GEN_R, 
GEN_L), and the upper chest (SPS). 
Landmarks with the highest variabili-
ty were those on the upper chest (SPS) 
and the back of the knee joint (GEN_R, 
GEN_L). Descriptive statistics of digiti-
zation error for landmarks by each ana-
tomical axis in absolute values are dis-
played in Table 3. Here, displacement 
in the superior-inferior direction often 
dominated.

Table 2. Descriptive statistics of distances between the landmarks digitised in the first and second batches 
(in mm)

Landmark  Median  Mean  Minimum  Maximum  SD 

ACR_R  11.1  13.26  0.45  36.29  8.44 

ACR_L  11.04  13.2  1.69  32.37  8.33 

SPS  15.52  18.65  2.98  50.25  12.11 

CVR  11.17  13.54  0.98  51.15  9.11 

RAD_R  11.89  14.23  2.38  42.7  9.05 

RAD_L  11.99  14.25  3.16  39.97  8.74 
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Landmark  Median  Mean  Minimum  Maximum  SD 

GEN_R  16.41  18.91  1.4  44.33  9.7 

GEN_L  13.44  15.90  2.27  46.18  9.50 

MALL_EX_R  10.5  12.65  1.11  50.65  8.51 

MALL_EX_L  10.21  11.88  1.43  30.98  6.5 

Table 3. Descriptive statistics of digitalisation error in absolute values (mm)

Landmark  Axis   Median  Minimum   Maximum  Quartile margin  

ACR_R   x   5.90  0.19  28.05  7.70 

y   6.56  0.17  24.00  8.04 

z   4.83  0.01  23.41  5.69 

ACR_L   x   5.12  0.32  26.01  7.78 

y   6.59  0.02  26.32  7.99 

z   4.16  0.33  19.51  7.96 

SPS   x   6.14  0.17  24.47  10.81 

y   5.95  0.04  23.16  6.46 

z   11.08  1.04  39.92  15.55 

CVR   x   4.77  0.04  28.64  4.89 

y   4.86  0.41  32.98  5.54 

z   6.71  0.10  36.64  5.11 

RAD_R   x   1.94  0.06  28.14  3.61 

y   6.74  0.21  33.02  9.03 

z   7.57  0.06  25.72  8.55 

RAD_L   x   2.45  0.03  25.85  3.92 

y   6.72  0.38  25.76  7.01 

z   7.46  0.06  37.52  8.26 

GEN_R   x   6.67  0.01  28.56  7.66 

y   5.44  0.19  16.90  6.24 

z   12.63  0.06  40.36  17.69 

GEN_L   x   5.62  0.04  37.18  7.42 

y   4.82  0.06  22.99  5.85 

z   8.96  0.60  35.84  10.64 

MALL_EX_R   x   4.05  0.12  43.48  5.07 

y   2.40  0.02  22.56  3.97 

z   6.68  0.38  23.39  7.96 

MALL_EX_L   x   4.27  0.06  23.01  6.52 

y   1.76  0.07  24.21  1.83 

z   7.83  0.04  24.17  9.06 
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Digitization error between 
 landmark groups

Based on the values of standard devi-
ation, the groups with the largest var-
iations were landmarks on the upper 
part of the chest (SPS and CVR) and 
landmarks on the lateral part of the 
back of the knee (GEN_R and GEN_L). 
Kruskal-Wallis test showed statistically 
significant differences between land-
mark groups (H = 21.94, p = <0.001). 
For landmarks located on the torso or 
limbs, Mann-Whitney U  Test showed 
no statistically significant difference 
(U = 19688, p = 0.15). For landmarks 
grouped according to the right and 
left body side, Wilcoxon pairwise test 
showed significant differences only for 
the landmarks located at the back of the 
knee (GEN_L and GEN_R) (T = 61.0, 
p = 0.02).

Effect of participant sex, age, body 
height, body size and body type 

The Mann-Whitney U  Test showed no 
statistically significant differences be-
tween males and females for any of the 
tested landmarks. Spearman’s correlation 
coefficient testing the effect of somatic 
factors (body height and estimated body 
size) on digitization error was found to be 
statistically insignificant for the total data 
set as well as separately for males and fe-
males. Similarly, no correlation was found 
while testing the error against age. 

The Kruskal-Wallis and median tests 
showed no statistically significant differ-
ences between all body type groups, except 
for the landmark cervicale (Kruskal-Wallis 
test H = 21.71, p = 0.02) (Tab. 4). In this 
case, the 3D models of individuals with 
normal weight produced the largest er-
rors, while the overweight group showed 
relative consistency in data acquisition. 

Table 4. Landmarks according to body type (in mm). Significant differences are marked with asterisk

  Normal weight (N 14)  Overweight (N 25)  Obesity (N 21) 

Landmark  Median  Mean  SD  Median  Mean  SD  Median  Mean  SD 

ACR_R  12.66  13.1  8.92  9.38  12.05  6.44  12.93  14.02  6.83 

ACR_L  10.92  11.25  7.8  15.01  10.32  7.39  10.66  11.5  9.57 

SPS  15.36  15.85  9.12  14.02  16.2  10.19  16.12  17.71  10.65 

CVR*  16.48  17.02  10.96  9.54  10.86  9.03  13.01  14.02  7.62 

RAD_R  15.41  16.22  8.02  11.01  12.1  8.97  12.04  13.52  8.38 

RAD_L  16.42  17.12  10.44  10.59  12.5  8.33  11.4  13.1  6.44 

GEN_R  19.2  20.08  9.38  16.5  18.8  10.09  18.27  20.22  9.98 

GEN_L  16.2  17.5  9.16  11.95  13.13  9.74  12.93  15.01  10.31 

MALL_EX_R  12.28  13.38  8.92  11.13  12.44  9.01  10.48  12.82  7.43 

MALL_EX_L  13.07  13.95  7.03  10.59  12.6  7.62  9.05  10.9  7.97 

Effect of shape and size variables 
Spearman’s correlation coefficient test-
ing the effect of shape, size, and sym-

metry variables on digitization error was 
found to be statistically significant for 
several landmarks. Correlations were 
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observed for the right acromiale point 
and shape-and-size PC3 associated with 
subtle arm and leg position and robus-
ticity, and for the left acromiale point 
together with the left radiale with PC4, 
which describes arm and leg position. 

(Fig. 4). Left acromiale and left radi-
ale points revealed a  relationship with 
shape-based PC3 and PC4, which de-
scribe the upper and lower body robus-
ticity and the ventrodorsal body dimen-
sion respectively.

Fig. 4. Description of 4 principal components expressing the most variability for shape and size (green 
corresponds to positive PC scores, purple corresponds to negative PC scores): PC1 overall size (67.1% 
variability), PC2 body width and arms position (8.7% variability), PC3 body width knee distance (4.8% 
variability) and PC4 knee distance (3.5% variability) and for shape: PC1 body position and strength of 
the upper half of the body (61.3% variability), PC2 body width (10.3% variability), PC3 robusticity of 
the lower and upper half of the body (5.6% variability) and PC4 anteroposterior body dimension (4.9% 
variability). Statistically significant correlations between digitalisation errors and principal components 
for both shape and shape and size are described by landmarks names with positive/negative correlation 
are market with plus or minus signs

Effect of error on linear distances 
The error of inter-landmark distances 
computed from the two sets of land-
marks is displayed in Table 5. The largest 
error, regardless of evaluation statistics, 
was recorded for the right-sided length 

of the shin (GEN_R-MALL_EX_R), while 
the smallest was observed for the dis-
tance between the right and left ankles 
(MALL_EX_R-MALL_EX_L). When com-
pared to the landmark error, Spearman’s 
correlation coefficient showed that the 



Mismeasurement of the virtual human body 89

strongest correlation with the absolute 
error was for the suprasternale point 
and the upper chest measurement 
(CVR-SPS) (ρ = 0.85, p = 0.001). This 
was followed by the knee joint points 
and their corresponding measurements 
(GEN_R vs GEN_R-GEN_L: ρ = 0.31, 
p  = 0.011; GEN_L vs GEN_R-GEN_L: 
ρ = 0.48, p = 0.001; GEN_R vs ACR_R-
RAD_R: ρ = 0.62, p = 0.011; GEN_L 

vs ACR_L-RAD_L: ρ = 0.53, p = 0.001; 
GEN_R vs GEN_R-MALL_EX_R: 
ρ = 0.65, p = 0.001; GEN_L vs GEN_L-
MALL_EX_L: ρ = 0.24, p = 0.06). How-
ever, when considering the described 
differences, the correlation between the 
points and the measurements of the up-
per chest remained significant (ρ = 0.60, 
p = 0.001), but the lower limb relation-
ships were not present.

Table 5. Error of inter-landmark distances (in mm) expressed as the mean absolute distance (MAD), the 
median absolute distance (MedAD) and technical error of measurement (TEM) 

   MAD  MedAD  TEM 

ACR_R-ACR_L  10.726  9.435  9.574 

ACR_R-RAD_R  11.165  9.675  10.090 

ACR_L-RAD_L  10.690  8.430  9.950 

ACR_R-GEN_R  14.763  11.035  13.308 

ACR_L-GEN_L  12.542  11.075  10.957 

GEN_R-MALL_EX_R  16.681  14.220  14.701 

GEN_L-MALL_EX_L  11.840  9.975  10.747 

GEN_R-GEN_L  10.022  7.990  8.929 

MALL_EX_R-MALL_EX_L  5.316  3.215  5.750 

CVR-SPS  13.764  11.650  12.019 

Discussion 

Selection of variables is a key aspect of 
any morphological data processing. Typi-
cally, this selection process is influenced 
by field standards, the study’s purpose, 
as well as traditions and lab protocols 
passed down through generations of pro-
fessionals (Fetter 1967; Ben Azous et al. 
2006). It is important to stress that most 
traditional anthropometric landmarks 
are defined relative to specific locations 
on the human body, often situated in ar-
eas with a solid bony base and minimal 
overlaying soft tissue. Similarly, it has 
also been pointed out that landmarks 
are defined for body dimensions, not 

locating a position on the body surface 
(Kouchi, Mochimaru 2011). In addition, 
these definitions generally pertain to 
taking linear measurements directly on 
the human body, assuming that the un-
derlying skeletal structures ensure place-
ment consistency (such as landmarks 
near joints or bone prominences) (Blaak 
2001). However, they do not account for 
the possibility of collecting a  landmark 
on a 3D model, where immediate feed-
back regarding the landmark’s position 
relative to its surroundings is missing. 
Before selecting the final ten landmarks 
for further processing, additional land-
marks located on the wrists, hips, and 
back of the pelvis area were considered 
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to ensure more thorough coverage of the 
entire human body. However, this pilot 
study revealed that landmarks on the 
wrists were unsuitable due to poor mod-
el quality in that area, and landmarks 
on the hips and lower back were inac-
cessible due to participants’ underwear 
or the observer ’s inability to follow the 
original point definition, which often re-
quires tactile assessment to confirm the 
location of the landmarks (e.g., iliospi-
nale, trochanterion).

The present study showed that 
among the ten tested landmarks digi-
tized on a  3D model representing the 
human body, the upper chest and both 
landmarks on the back of the knee joint 
had the highest digitization errors. The 
error in the chest area is understandable, 
as the region is relatively flat and lacks 
geometric characteristics that are easily 
distinguishable on 3D models. This is 
in agreement with the Harris and Smith 
(2009) study, which reported that surface 
curvatures affected the accuracy of land-
mark localization – sharper curves facili-
tate landmark placement, whereas more 
gradual curvatures tend to make place-
ment more difficult.

In contrast, the large error in the knee 
joint region is more puzzling. It is worth 
noting that the major displacement of the 
knee joint points was observed in the up 
and down direction. Subsequently, this 
had a significant effect on the error regis-
tered for the length of the shin. Positions 
of joints are frequently traced manually 
or automatically on static or dynamic re-
cordings for gait or movement analyses 
(Ruescas-Nicolau et  al. 2024). In these 
instances, however, the joint is often in 
various degrees of flexion, which facili-
tates landmark placement. Similarly, for 
direct anthropometrics, the measured in-
dividual is often asked to facilitate point 

placement by changing the joint position 
(della Croce et al. 1999). 

In addition to region specificity, sig-
nificant differences were observed be-
tween right and left-sided landmarks. 
This was also very pronounced in the 
landmarks  of the knee joint. Observ-
er ’s handedness is often reported as 
a source of asymmetry in measurement 
error studies (Harris and Smith 2009) 
and was also previously recorded when 
landmarks were collected using hand-
held mechanical digitizers (such as Mi-
croScribe) (Urbanová 2009, Urbanová 
2011). It remains unclear whether such 
a bias is translated into the virtual work-
space in a  similar manner, although 
computer screens, mice, and other 
accessories tend to be arranged to ac-
commodate the user ’s handedness and 
side preferences. It is worth noting that 
Kouchi and Mochimaru (2011) reported 
no right and left differences when land-
marking a real-life subject.

Regarding external factors, our results 
showed that the digitization error of the 
analysed landmarks was not affected 
by the sex of the participants for whom 
the landmarks were digitized. Neither 
was the digitization error affected by the 
body type of the individuals. This indi-
cates that sex-related variations in body 
size and morphology, particularly in fat 
distribution (Ruff 2002), had no signifi-
cant impact on the accuracy of landmark 
placement for the ten landmarks we con-
sidered. This is logical given that none 
of the tested landmarks are located in 
regions generally associated with fat tis-
sue deposition, which can cause morpho-
logical rounding and decrease landmark 
accuracy (Bouchard et  al. 1990). Of the 
ten landmarks, only the suprasternale 
and cervicale points would be the logical 
choices. Here, the cervicale did indeed 
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showed statistically significant associ-
ations with BMI values. However, the 
observed trend was not straightforward 
as the largest error was associated with 
normally weighted individuals, while the 
most accurately acquired data were from 
the overweight group. 

The literature on acquisition error 
suggests that for body dimensions, the 
errors in landmark placement are largely 
underestimated (Kouchi and Mochimaru 
2011). Misplacement of landmarks sig-
nificantly impacts both body dimensions 
and shape analysis based on these land-
marks (Xi et al. 2007). In addition, most 
studies have evaluated body dimensions 
rather than the erroneous placement of 
landmarks, and the effects of point mis-
placement have not been considered sep-
arately (Aldridge et  al. 2005), possibly 
because landmark placement depends 
heavily on human judgment. Sometimes 
there might be a tendency to deny or con-
ceal the impact of the human factor in 
scientific procedures (Murrie et al. 2019). 
This leads to the wrongful impression 
that most landmarks are placed correct-
ly. Meysam et  al. (2021) demonstrated 
that the measurement error was gener-
ally smaller compared to the error in the 
landmarks themselves. This is logical, 
as the greatest effect on linear measure-
ments comes from landmark misplace-
ment that aligns with the direction of the 
inter-landmark distance, whereas side 
deviations of the same magnitude would 
be less pronounced.

Our results confirm that landmark 
misplacement was more pronounced 
than the measurement error associated 
with inter-landmark distances. In both 
cases, however, the errors were alarm-
ingly large. While Kouchi and Mochi-
maru (2011) reported intra-observer 
errors for the cervicale, suprasternale, 

acromiale, and radiale points in land-
marking a real-life subject in the range 
of 1.5 to 2.5 mm, and inter-observer er-
rors of 3.3 to 11.5 mm, our study found 
intra-observer errors far exceeding these 
values. The lack of geometric details in 
3D models, the absence of immediate 
feedback about the error magnitude, and 
the absence of texture guiding the land-
mark placement, can be cited as reasons 
for these results. Additional training, 
proper supervision and experience are 
often recommended to improve profi-
ciency and accuracy in data acquisition. 
However, in our case, the landmarks 
were collected by a  single, reasonably 
experienced operator (the first author), 
who had spent a  significant amount of 
time on landmark selection and adjust-
ment of definitions. We believe that it is 
important not to shy away from these 
results, as errors of 3D body landmarks 
have reported scarcely and can signif-
icantly alter the outcomes of 3D scan-
based analyses.

Lately, automated landmark detection 
algorithms have been on the rise owing 
to the computational capabilities of ma-
chine learning algorithms, particularly 
the neural networks (Ruescas-Nicolau 
et  al. 2024). While a  deep insight into 
these approaches is beyond the scope 
of this study, it is important to stress 
that they may be the key to improving 
the accuracy of manually collected land-
marks. Generally, there are two types of 
techniques: landmark-based and tem-
plate-based (Kaashki et  al. 2021). The 
major drawbacks of these approaches are 
that they require a  large training data-
set if based on state-of-the-art machine 
learning algorithms, and they are often 
incompatible with traditional anatomical 
or anthropometric points (Ruescas-Nico-
lau et al. 2024).
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Conclusion

Our results indicate that digitizing land-
marks to a  3D model representing the 
human body has its pitfalls. When dig-
itizing landmarks, it is necessary to pay 
attention to the proper methodology of 
digitization so that the already high error 
does not increase. It is also important to 
select landmarks according to their loca-
tion, so that a compromise between their 
digitization error and the requirement of 
the analysis is achieved.
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