RYSZARD ŁUBA

ZALEŻNOŚĆ MIĘDZY BUDOWĄ STOPY A BUDOWĄ CIAŁA

Badania związków między ogólnymi rozmiarami ciała i pomiarami stóp wykazały, jak należało się spodziewać, że cechy te są ze sobą skorelowane. Istotna okazała się więc sprawa analizy siły tych związków, poszukiwanie takich cech stóp, które najwyraźniej uwarunkowane są ogólną budową ciała [6, 7, 8]. Wyniki, którymi dysponujemy w piśmiennictwie, dotyczą przede wszystkim młodego, interesujące jednak, jak współzależności te wyglądały u osób dorosłych, u których cechy długościowe ciała i stopy są ustabilizowane, natomiast ciężar ciała oraz cechy serekostiowe i obwody stopy wykazują tendencję do powiększania się, zwłaszcza u osób po 35 roku życia [2, 3, 4, 5].

Celem niniejszej pracy jest ustalenie, poprzez zbadanie związków między wymiarami i wskaźnikami stopy a budową ciała, jak dostosowuje się wydolność fizjologiczna stopy do jej obciążeń statycznych i dynamicznych.

Materiał do pracy zebrano w trakcie badań wykonanych w 1968 r. przez Pracownię Antropometrii i Fizjologii Instytutu Przemysłu Skórnego w Łodzi, w wylosowanych zakładach pracy na terenie Wielkopolski i Mazowsza [5]. Zbadano 402 kobiety w wieku 19 – 35 lat, 648 kobiet w wieku 36 – 60 lat, 366 mężczyzn w wieku 19 – 35 lat oraz 391 mężczyzn w wieku 36 – 60 lat. Do pomiarów zastosowano, poza standardowym sprzętem antropometrycznym, fototechniczny aparat do mierzenia cech liniowych stopy. U każdego osobnika mierzono następujące cechy: 1) długość stopy pte-ap. I/II; 2) przyśrodkową szerokość palcową stopy, mierzoną w 91% długości stopy, licząc od punktu pte; 3) zewnętrzną szerokość palcową stopy mierzoną w miejscu zakończenia (opuszki) małego palca; 4) wysokość podbicia stopy; 5) szerokość pięty, mierzoną w 18% długości stopy, licząc od punktu pte, 6) szerokość przodostopia mtt-mtf; 7) obwód przodostopia przez mtt i mtf; 8) obwód przez podbicie; 9) obwód przez piętę; 10) ciężar ciała; 11) wysokość ciała. Cechy stopy 1 – 9 przedstawiono na rys. 1.

Z pomiarów obliczono następujące wskaźniki (w nawiasach numery pomiarow):

Opracowanie statystyczne obejmowało obliczenie miar tendencji centralnych cech, dyspersji, współczynników korelacji oraz błędów standardowych. Wymienione charakterystyki statystyczne obliczono dla wszy-
Tab. 1. Charakterystyki liczbowe stóp mężczyzn

Cechy: 1 — długość stopy, 2 — przyśrodkowa szerokość palcowa, 3 — szerokość pięty, 6 — szerokość przedostopia, 7 — obwód przedostopia, 8 — obwód przez podbicie, 9 — obwód przez piętę, 10 — ciężar ciała, 11 — wysokość ciała; wskaźniki stop: 22 — wysokość-ciało, 13 — szerokość-ciało, 14 — obwód-łb, 15 — wysokość-ciało, 16 — szerokość-ciało, 17 — szerokość stoppedy, 18 — szerokość-ciało, 19 — wskaźnik Queletea, 20 — wskaźnik obciążenia stopy, 21 — ustawienia palca, 22 — ustawienia palca małego. Oznaczenia współczynników korelacji: \(r_{xx} \) — dane cechy z długością stopy. \(r_{ex} \) — z wysokością ciała, \(r_{ex} \) — ze wskaźnikiem wagowo-wzrostowym (Q). \(r_{ex} \) — ze wskaźnikiem obciążenia stopy (P).

<table>
<thead>
<tr>
<th>CECHA</th>
<th>(\bar{x})</th>
<th>(s_x)</th>
<th>(v_x)</th>
<th>(r_{ax})</th>
<th>(r_{bx})</th>
<th>(r_{cx})</th>
<th>(r_{dx})</th>
<th>(r_{ex})</th>
<th>CECHA</th>
<th>(\bar{x})</th>
<th>(s_x)</th>
<th>(v_x)</th>
<th>(r_{ax})</th>
<th>(r_{bx})</th>
<th>(r_{cx})</th>
<th>(r_{dx})</th>
<th>(r_{ex})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>263,4</td>
<td>12,1</td>
<td>4,6</td>
<td>1,00</td>
<td>0,46</td>
<td>0,67</td>
<td>0,29</td>
<td>0,10</td>
<td>12</td>
<td>74,1</td>
<td>2,1</td>
<td>7,6</td>
<td>-0,35</td>
<td>-0,06</td>
<td>-0,08</td>
<td>-0,10</td>
<td>0,22</td>
</tr>
<tr>
<td>2</td>
<td>48,5</td>
<td>4,6</td>
<td>9,6</td>
<td>0,18</td>
<td>0,24</td>
<td>0,26</td>
<td>0,18</td>
<td>0,20</td>
<td>13</td>
<td>39,6</td>
<td>1,8</td>
<td>5,6</td>
<td>-0,30</td>
<td>0,13</td>
<td>-0,22</td>
<td>0,21</td>
<td>0,32</td>
</tr>
<tr>
<td>3</td>
<td>36,2</td>
<td>3,8</td>
<td>10,1</td>
<td>0,27</td>
<td>0,24</td>
<td>0,16</td>
<td>0,21</td>
<td>0,16</td>
<td>14</td>
<td>96,6</td>
<td>1,8</td>
<td>4,0</td>
<td>-0,35</td>
<td>0,08</td>
<td>-0,14</td>
<td>0,27</td>
<td>0,38</td>
</tr>
<tr>
<td>4</td>
<td>71,2</td>
<td>4,2</td>
<td>7,4</td>
<td>0,27</td>
<td>0,35</td>
<td>0,34</td>
<td>0,27</td>
<td>0,28</td>
<td>15</td>
<td>28,6</td>
<td>1,9</td>
<td>6,8</td>
<td>-0,15</td>
<td>-0,05</td>
<td>-0,01</td>
<td>-0,05</td>
<td>0,01</td>
</tr>
<tr>
<td>5</td>
<td>70,4</td>
<td>4,8</td>
<td>6,4</td>
<td>0,49</td>
<td>0,53</td>
<td>0,29</td>
<td>0,48</td>
<td>0,39</td>
<td>16</td>
<td>41,2</td>
<td>1,1</td>
<td>2,7</td>
<td>0,05</td>
<td>-0,09</td>
<td>-0,10</td>
<td>-0,05</td>
<td>-0,04</td>
</tr>
<tr>
<td>6</td>
<td>104,1</td>
<td>5,2</td>
<td>5,0</td>
<td>0,55</td>
<td>0,54</td>
<td>0,42</td>
<td>0,46</td>
<td>0,38</td>
<td>17</td>
<td>68,0</td>
<td>3,7</td>
<td>5,4</td>
<td>0,03</td>
<td>0,12</td>
<td>-0,04</td>
<td>0,05</td>
<td>0,11</td>
</tr>
<tr>
<td>7</td>
<td>252,6</td>
<td>12,6</td>
<td>5,0</td>
<td>0,63</td>
<td>0,59</td>
<td>0,50</td>
<td>0,48</td>
<td>0,40</td>
<td>18</td>
<td>21,0</td>
<td>1,0</td>
<td>5,0</td>
<td>-0,06</td>
<td>0,09</td>
<td>-0,17</td>
<td>0,06</td>
<td>0,13</td>
</tr>
<tr>
<td>8</td>
<td>248,2</td>
<td>12,5</td>
<td>5,0</td>
<td>0,60</td>
<td>0,58</td>
<td>0,50</td>
<td>0,48</td>
<td>0,41</td>
<td>19</td>
<td>409,6</td>
<td>46,5</td>
<td>11,4</td>
<td>0,29</td>
<td>0,96</td>
<td>0,13</td>
<td>1,00</td>
<td>0,95</td>
</tr>
<tr>
<td>9</td>
<td>336,7</td>
<td>15,3</td>
<td>4,5</td>
<td>0,75</td>
<td>0,64</td>
<td>0,60</td>
<td>0,50</td>
<td>0,41</td>
<td>20</td>
<td>269,9</td>
<td>29,3</td>
<td>11,1</td>
<td>0,10</td>
<td>0,93</td>
<td>0,18</td>
<td>0,95</td>
<td>1,00</td>
</tr>
<tr>
<td>10</td>
<td>69,6</td>
<td>8,6</td>
<td>12,4</td>
<td>0,46</td>
<td>1,00</td>
<td>0,41</td>
<td>0,96</td>
<td>0,93</td>
<td>21</td>
<td>46,6</td>
<td>4,1</td>
<td>8,8</td>
<td>-1,00</td>
<td>-0,04</td>
<td>0,05</td>
<td>-0,06</td>
<td>0,00</td>
</tr>
<tr>
<td>11</td>
<td>1708,7</td>
<td>62,9</td>
<td>3,8</td>
<td>0,68</td>
<td>0,49</td>
<td>1,00</td>
<td>0,17</td>
<td>0,32</td>
<td>22</td>
<td>35,6</td>
<td>3,8</td>
<td>10,6</td>
<td>-0,11</td>
<td>-0,04</td>
<td>-0,05</td>
<td>-0,04</td>
<td>-0,02</td>
</tr>
</tbody>
</table>

Mężczyźni młodzi (19-35 lat)

Mężczyźni starsi (36 i więcej lat)
<table>
<thead>
<tr>
<th>CECHA</th>
<th>\bar{X}</th>
<th>S_x</th>
<th>V_x</th>
<th>r_{ax}</th>
<th>r_{bx}</th>
<th>r_{cx}</th>
<th>r_{dx}</th>
<th>r_e</th>
<th>CECHA</th>
<th>\bar{X}</th>
<th>S_x</th>
<th>V_x</th>
<th>r_{ax}</th>
<th>r_{bx}</th>
<th>r_{cx}</th>
<th>r_{dx}</th>
<th>r_{ex}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>240,9</td>
<td>10,6</td>
<td>4,4</td>
<td>1,00</td>
<td>0,40</td>
<td>0,64</td>
<td>0,27</td>
<td>0,14</td>
<td>12</td>
<td>27,0</td>
<td>2,1</td>
<td>7,6</td>
<td>-0,35</td>
<td>0,07</td>
<td>-0,15</td>
<td>0,11</td>
<td>0,18</td>
</tr>
<tr>
<td></td>
<td>43,4</td>
<td>4,1</td>
<td>9,5</td>
<td>0,21</td>
<td>0,23</td>
<td>0,17</td>
<td>0,24</td>
<td>0,20</td>
<td>13</td>
<td>40,1</td>
<td>2,0</td>
<td>4,9</td>
<td>-0,26</td>
<td>0,22</td>
<td>-0,20</td>
<td>0,28</td>
<td>0,31</td>
</tr>
<tr>
<td></td>
<td>35,9</td>
<td>3,4</td>
<td>9,5</td>
<td>0,20</td>
<td>0,21</td>
<td>0,17</td>
<td>0,19</td>
<td>0,21</td>
<td>14</td>
<td>29,6</td>
<td>4,5</td>
<td>4,7</td>
<td>-0,30</td>
<td>0,26</td>
<td>-0,16</td>
<td>0,31</td>
<td>0,37</td>
</tr>
<tr>
<td></td>
<td>65,1</td>
<td>4,7</td>
<td>7,3</td>
<td>0,24</td>
<td>0,31</td>
<td>0,33</td>
<td>0,28</td>
<td>0,27</td>
<td>15</td>
<td>28,6</td>
<td>1,8</td>
<td>6,5</td>
<td>-0,15</td>
<td>-0,15</td>
<td>-0,03</td>
<td>-0,03</td>
<td>-0,12</td>
</tr>
<tr>
<td></td>
<td>46,9</td>
<td>4,3</td>
<td>6,6</td>
<td>0,36</td>
<td>0,41</td>
<td>0,24</td>
<td>0,37</td>
<td>0,33</td>
<td>16</td>
<td>41,5</td>
<td>1,2</td>
<td>3,0</td>
<td>0,03</td>
<td>-0,04</td>
<td>-0,09</td>
<td>0,02</td>
<td>-0,06</td>
</tr>
<tr>
<td></td>
<td>96,6</td>
<td>5,5</td>
<td>5,7</td>
<td>0,54</td>
<td>0,50</td>
<td>0,32</td>
<td>0,45</td>
<td>0,37</td>
<td>17</td>
<td>67,2</td>
<td>4,0</td>
<td>6,0</td>
<td>0,04</td>
<td>-0,03</td>
<td>-0,04</td>
<td>-0,02</td>
<td>-0,01</td>
</tr>
<tr>
<td></td>
<td>232,8</td>
<td>12,5</td>
<td>5,4</td>
<td>0,56</td>
<td>0,55</td>
<td>0,39</td>
<td>0,49</td>
<td>0,43</td>
<td>18</td>
<td>20,9</td>
<td>1,2</td>
<td>5,8</td>
<td>-0,05</td>
<td>-0,07</td>
<td>-0,16</td>
<td>-0,03</td>
<td>-0,03</td>
</tr>
<tr>
<td></td>
<td>227,5</td>
<td>12,0</td>
<td>5,3</td>
<td>0,52</td>
<td>0,63</td>
<td>0,36</td>
<td>0,59</td>
<td>0,53</td>
<td>19</td>
<td>375,6</td>
<td>58,2</td>
<td>5,5</td>
<td>0,27</td>
<td>0,97</td>
<td>0,14</td>
<td>1,00</td>
<td>0,97</td>
</tr>
<tr>
<td></td>
<td>310,1</td>
<td>14,9</td>
<td>4,8</td>
<td>0,68</td>
<td>0,65</td>
<td>0,52</td>
<td>0,56</td>
<td>0,50</td>
<td>20</td>
<td>246,3</td>
<td>37,3</td>
<td>15,2</td>
<td>0,14</td>
<td>0,96</td>
<td>0,20</td>
<td>0,97</td>
<td>1,00</td>
</tr>
<tr>
<td></td>
<td>59,4</td>
<td>9,8</td>
<td>16,4</td>
<td>0,40</td>
<td>1,00</td>
<td>0,35</td>
<td>0,97</td>
<td>0,96</td>
<td>21</td>
<td>45,0</td>
<td>4,1</td>
<td>9,0</td>
<td>-0,12</td>
<td>0,03</td>
<td>-0,12</td>
<td>0,06</td>
<td>0,07</td>
</tr>
<tr>
<td></td>
<td>1579,9</td>
<td>58,1</td>
<td>3,7</td>
<td>0,64</td>
<td>0,35</td>
<td>1,00</td>
<td>0,14</td>
<td>0,20</td>
<td>22</td>
<td>37,2</td>
<td>3,3</td>
<td>8,9</td>
<td>-0,14</td>
<td>0,01</td>
<td>-0,03</td>
<td>0,02</td>
<td>0,05</td>
</tr>
</tbody>
</table>

Kobiety młodsze (19-35 lat)

Kobiety starsze (36-1 więcej lat)

Tab. 2. Charakterystyki liczbowe stóp kobiet. Opis jak w tabeli 1.
Sikich badanych cech i wskaźników, jednak w niniejszej pracy ze współczynników korelacji wykorzystano jedynie te, które dotyczyły związków ciecz stopy z jej długością, z wysokością ciała, ciężarem ciała, wskaźnikiem Queteleta \(Q \) i wskaźnikiem obciążenia stopy \(P \).

 Wyniki obliczeń zestawiono w tabelach 1 i 2. Współczynniki korelacji ciecz stopy z wysokością i ciężarem ciała oraz wskaźnikami Queteleta \(Q \) obciążenia stopy \(P \) mają wartości dodatnie. Rozpatrywane współzależności wyznaczają dość zróżnicowaną siłę związku. Cechy określające szerokość palcowej części stopy dowolnej strony wyznaczają niską współzależność, zarówno z wysokością i ciężarem ciała, jak również z wartościami wskaźników \(Q \) i \(P \). Natomiast cechy obwodowe stopy, jak obwód przedostopia, podbicia, czy obwód przez piętę, wyznaczają dość silny związek z rozpatrywanymi cechami ciała. Równocześnie każda z ciecz stopy wyznacza różną siłę związku z wysokością ciała, ciężarem oraz z wartościami wskaźników \(Q \) i \(P \). Tak np. szerokość przedostopia, zarówno u kobiet, jak i u mężczyzn, jest najsilniej skorelowana z ciężarem ciała, a najsilniej z wysokościam ciała. Badane wartości współczynników korelacji wyznaczają niewielkie zróżnicowanie w zależności od płci i wieku badanych.

Spośród 9 ciecz stóp, cieczą najsilniej skorelowaną z wysokością ciała jest długość stopy, przy czym współczynniki korelacji wyższe są u mężczyzn niż u kobiet. Przyśrodkowa i zewnętrzna szerokość palcowa stopy wyznaczają najsłabszy związek z wysokością ciała, podobnie zresztą jak z długością stopy. Wartości współczynników korelacji dla takich ciecz stóp, jak: szerokość pięty, szerokość przedostopia, obwód podbicia, obwód przez piętę, są niższe u kobiet, niż u mężczyzn. Oznaczałoby to, że podstawowe cechy szerokościowe i obwody stopy, jak również jej długość, są silniej uzależnione od wysokości ciała u mężczyzn niż u kobiet.

Najwyższe wartości współczynników korelacji ciecz stopy z ciężarem ciała odnoszą się do obwodu stopy w podbiciu i przez piętę. Pomiary określające szerokość palcowej części stopy wyznaczają niskie wartości współczynników korelacji z ciężarem ciała, podobnie jak z długością stopy i wysokością ciała. Stwierdzono również dla większości ciecz wyższe wartości współczynników korelacji u mężczyzn niż u kobiet. Odnosi się to szczególnie do szerokości pięt. Podobnie dla większości ciecz stwierdzono wyższą korelację z ciężarem ciała w grupach osobników młodszych obu płci. Uzyskane wyniki pozwalają stwierdzić, że związki rozpatrywanych ciecz stóp z ciężarem ciała jest silniejszy, niż z wysokością ciała. Nie dotyczy to jedynie długości stopy silnie związanej z wysokością oraz wysokości stopy w podbiciu, nie wykazującej wyraźnych różnic. Można zatem wnioskować, że osobników o większym ciężarze ciała cechują stopy szersze i tęższe.

Ze względu na bardzo wysoką korelację wskaźnika Queteleta z ciężarem ciała, przedstawione poniżej dane, dotyczące jego związku z pomiarami stóp należy traktować jako uzupełnienie poprzednich stwierdzeń.
Wartości współczynników korelacji wskazują na znaczną współzależność wskaźnika \(Q \) z obwodami stóp oraz niską współzależność z przyśrodkową i zewnętrzną szerokością palcową stopy.

Ze wskaźnikiem \(P \), podobnie jak z wagowo-wzrostowym, najsilniej skorelowane są obwody przedostopia, podbicia i przez piętę, najsłabszą współzależność wskaźnik ten wykazuje z długością stopy. Wartości współczynników korelacji cech stóp ze wskaźnikiem \(P \) są dla większości cech stopy niższe, niż ze wskaźnikiem wagowo-wzrostowym (\(Q \)). Wydaje się, że o „sile” budowy stopy w mniejszym stopniu decyduje jej obciążenie statyczne, w większym natomiast ogólna budowa ciała.

Spośród badanych wskaźników stopy jedynie szerokościowo-długościowy i obwodowo-długościowy wykazują istotną współzależność z ciężarem ciała w badanej populacji. Istotną współzależność dodatnią stwierdzono również pomiędzy ciężarem ciała i wskaźnikiem wysokościowo-długościowym stopy w grupie kobiet starszych. Osobnicy cechujący się większym ciężarem ciała wykazują tendencję do posiadania stóp względnie szerszych i tęższych. Stwierdzone zależności, aczkolwiek są statystycznie istotne, są jednak stosunkowo słabe (\(r = 0,16 — 0,26 \)).

Statystycznie istotne związek z wysokością ciała stwierdzono w przypadku wskaźników: szerokościowo-długościowego, obwodowo-długościowego i szerokościowo-obwodowego pięty dla wszystkich badanych grup oraz wysokościowo-długościowego dla stóp kobiet. Osoby o wyższym wzroście wykazują tendencję do uformowania stóp względnie węższych w przedostopiu, szczuplejszych w obwodzie przedostopia, niższych w podbiciu oraz węższych w pięcie. Współczynniki korelacji podobnie, jak z ciężarem ciała, są niskie. Charakter współzależności wskaźników stopy ze wskaźnikiem \(Q \) jest taki sam, jak z ciężarem ciała. Współczynniki korelacji są dodatnie i statystycznie istotne dla wskaźników szerokościowo-długościowego i obwodowo-długościowego stopy. Wskaźnik wysokościowo-długościowy stopy we wszystkich grupach jest istotnie skorelowany jedynie ze wskaźnikiem obciążenia stopy (\(P \)). Współzależność pomiędzy wskaźnikiem obciążenia stopy a wskaźnikami stopy: wysokościowo-długościowym, szerokościowo-długościowym i obwodowo-długościowym osiąga większe wartości, niż pomiędzy wskaźnikiem wagowo-wzrostowym a tymi samymi wskaźnikami stopy. Dowodzi to właściwości dostosowania struktury nosnej stopy do obciążenia statycznego.

Wartości współczynników korelacji rozpatrywanych cech stopy z wysokością ciała i ciężarem oraz wskaźnikiem wagowo-wzrostowym (\(Q \) okazały się statystycznie istotne, jednak nieznacznie niższe od wartości współczynników korelacji cech stopy z jej długością. Oznacza to, że siła wzajemnych związków cech należących do jednego organu jest większa, niż poszczególnych cech tego organu z innymi cechami ciała. Najsilniejszą zależność stwierdzono między długością stopy a wysokością ciała. Osobników o wyższym wzroście cechują na ogół dłuższe stopy, co wielokrotnie
podawano w piśmiennictwie [1, 6, 7, 8]. Znaczenie słabszy związek długości stopy z ciężarem, niż z wysokością ciała, wydaje się wynikać z większego wpływu czynników środowiskowych na kształtowanie się ciężaru ciała. Za tego rodzaju interpretacją przemawia fakt, że u kobiet starszych (36 i więcej lat) wartość współczynnika korelacji dla długości stopy z ciężarem ciała jest niższa niż u kobiet młodszych (19—35 lat). Zjawiska tego nie stwierdzono w odniesieniu do stóp mężczyzny. Ciężar ciała dojrzałych kobiet, szczególnie powyżej 30 roku życia, wykazuje większe zróżnicowanie niż u mężczyzn [4, 5].

Silniejsza korelacja cech szerokościowych i obwodowych stopy z ciężarem, niż z wysokością ciała, wynika z przystosowania się struktury nośnej stopy do jej statycznego i dynamicznego obciążenia. Ciężar ciała może wpływać na tęgłość stopy, tzn. na jej cechy szerokościowe i obwody. W okresie pełnej stabilizacji długości stopy, zmieniający się ciężar ciała, a wraz z nim obciążenie statyczne i dynamiczne, jest czynnikiem modyfikującym obraz morfologiczny stóp. Stopy czynnościowo sprawne zmieniają wówczas jedynie swoje wymiary poprzeczne i obwodowe, natomiast stopy niewydolne ulegają wszelkiego rodzaju deformacjom. W analizowalnym materiale znalazło to odbicie w odniesieniu do stóp kobiet, a szczególnie do stóp kobiet starszych. Wzrost obciążenia stóp ciężarem ciała po 30 roku życia spowodował znaczy wzrost wymiarów szerokościowych i obwodowych stóp oraz wpłynął na liczniejsze pojawianie się deformacji stóp, niż w grupie kobiet młodszych [2, 3, 5].

PIŚMIENNICTWO

Pracownia Antropometrii i Fizjologii
Instytutu Przemysłu Skórzanego
91-463 Łódź, Zgierska 73

INTERRELATION BETWEEN MORPHOLOGY OF FOOT AND BODY BUILD

by RYSZARD ŁUBA

The aim of this paper is to analyse how physiological capacity of foot adapts itself to static and dynamic stresses. The method applied was the analysis of relations of suitably selected dimensions and proportions of foot to general characteristics of body build. The material comprises measurements of 402 females aged
R. Łuba

19 - 35 years, 648 females aged 36 - 60 years, 366 males aged 19 - 35 years and 391 males aged 36 - 60 years.

In the tables are given mean values, standard deviations and correlation coefficients of each character with: foot length ($r_{d\alpha}$), body weight ($r_{b\alpha}$), body height (r_{cx}), weight to height index (r_{dx}) and index of stress exerted on foot (r_{ex}). Numbers denoting characters in the table are the same as on fig. 1 (numbers 1 - 9), 10 denotes body weight, 11 — body height, 12 — index calculated as (4 : 1)×100, 13 — index (6 : 1)×100, 14 — index (7 : 1)×100, 15 — index (4 : 8)×100, 16 — index (6 : 7)×100, 17 — index (5 : 6)×100, 18 — index (5 : 9)×100, 19 — index (10 : 11)×100 — weight to height index, 20 — index (10 : 1) — index of stress exerted on foot, 21 — index (2 : 6)×100, 22 — index (3 : 6)×100.

DÉPENDENCE ENTRE LA STRUCTURE DU PIED ET DU CORPS

par RYSZARD ŁUBA

Le but de ce travail consiste à étudier l'adaptation physiologique du pied aux charges dynamiques et statiques. La méthode employée était basée sur les rapports ayant lieu entre les mesures et les indices de pied choisis d'une part les caractères générale du corps, de l'autre. Le matériel a été obtenu des mesures de 402 pieds de femmes âgées de 19 à 35 ans; 648 femmes à l'âge de 36 à 60 ans; 366 hommes âgés de 19 à 35 ans et 391 homme à l'âge de 36 à 60 ans.

Dans les tableaux les moyennes arithmétiques, les écarts-types et les coefficients de corrélations se rapportant à chacun des caractères on été comparés à la longueur de pied ($r_{d\alpha}$) au poids ($r_{b\alpha}$), à la taille (r_{cx}), à l'indice poids — taille (r_{dx}) et à l'indice de charge du pied (r_{ex}). Le numérotage des traits dans le tableau correspond à la Fig 1. de (1 à 9). Avec le numéro 10 on a marqué le poids, 11 — la taille, 12 — l'indice calculé des mesures (4 : 1)×100, 13 — l'indice (6 : 1)×100, 14 — (7 : 1)×100, 15 — l'indice (4 : 8)×100, 16 — l'indice (6 : 7)×100, 17 — (5 : 6)×100, 18 — (5 : 9)×100, 19 — (10 : 11)×100 — l'indice poids — taille, 20 — (10 : 1) — l'indice de charge du pied, 21 — (2 : 6)×100, 22 — (3 : 6)×100.