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Strontium isotopes as an indicator of human 
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AbstrAct: Isotope analyses of bones and teeth allow us to study phenomena which occurred in the history 
of human species and which are difficult to capture by traditional anthropological methods. Measuring ox-
ygen, nitrogen and carbon isotope levels in the skeleton makes it possible to reconstruct climatic changes, 
diet and/or the weaning process. Among isotopes used in such analyses are strontium isotopes, helpful 
in analysing migration and studying the mobility of historical and prehistoric human populations. In this 
respect, the proportion of two isotopes, the heavier 87Sr and the lighter 86Sr, is measured, following their 
extraction from the bioapatite of the bone mineral. Released from rocks in the weathering process, stron-
tium permeates individual components of inanimate and animate environments, and then finds its way, 
together with food, to the human body. Thanks to comprehensive environmental studies and the measure-
ment of the strontium ratio 87Sr/86Sr in various animal tissues it is possible to determine the local isotope 
background for the environment. Values obtained by analysing human skeletons referenced against the 
range of environmental isotope variability enable researchers to trace back the location inhabited by the 
individual or group.

Key words: human mobility, stable isotopes, 87Sr/86Sr, local isotope range

Introduction

Studying life stories of individuals from 
distant historical periods is not an easy 
task. All findings on historical human 
populations obtained by archaeological 
or osteological analyses are currently 
expanded by molecular tests. Research-
ers describing the history of our species 
began to use analyses of long-lived iso-

topes of several elements such as hydro-
gen (Hobson 1999; King 2012), oxygen 
(Hodell et al. 2004; White et al. 2004a), 
nitrogen (DeNiro 1987; Hedman et al. 
2002; Pate et al. 2002), carbon (Scher-
er et al. 2007), sulphur (Fry et al. 1982; 
Schoeninger and Moore 1992; Oelze 
et al. 2012) and strontium, previous-
ly used e.g. in ecology (Reinhardt et al. 
2001; Porder et al. 2003; Andrew Royle 
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and Rubenstein 2004; Kennedy et al. 
2005; Ravikant and Bajpai 2010; Julien 
et al. 2012), in paloeclimatic (Fricke et 
al. 1998; Prohaska et al. 2002) or geo-
logical research (Gorokhov et al. 2001; 
Kontak et al. 2001). Conclusions drawn 
from such investigations concern, among 
others, subjects related to such aspects 
of human life as migration or diet.

The origin of individuals and entire 
human groups is determined by methods 
which are based not only on paleogenetic 
analyses, but also on archaeological arte-
facts. Other, skeleton-based approaches, 
involve craniometrical measurements, 
analyses of intentional skull or teeth 
modifications characteristic of various 
groups (Schweissing and Grupe 2000; 
Williams and White 2006; Andrushko 
et al. 2009; Spence and White 2009). 
Interdisciplinary studies are also carried 
out, in which researchers draw conclu-
sions from analyses of both historical 
and archaeological material such as 
achievements of culture, architecture, in-
scriptions or reliefs as well as linguistic 
analysis. In addition, grave accessories, 
ceramics, jewellery, materials, garments 
etc. are also taken into consideration 
(Budd et al. 2004; Mitchell and Millard 
2009; Price et al. 2010; Shaw et al. 2011; 
Knudson et al. 2012b). However, a  de-
scription of the migrations of a  given 
group based only on such analyses may 
be ambiguous: cultural metamorphoses 
may have their origins in migrations, but 
this is not a universal rule. On the other 
hand, internal cultural transformations 
occurring independently of the impact of 
other groups may lead to specific cultural 
convergences in spite of the physical sep-
aration of convergent populations. An-
other explanation for such convergence 
may be ‘transfer of goods’ in the form 
of payment, exchange or theft (Price et 

al. 2010; Shaw et al. 2011). Also note 
that extant artefacts may constitute an 
incomplete representation of the flow 
of population, group dynamics or ethnic 
boundaries (Andrushko et al. 2009).

In early 20th century Erickson (1985; 
1989) suggested the application of stron-
tium isotopes in migration studies on 
prehistoric populations. The technique 
has been successfully used in anthropol-
ogy ever since (including e.g. Price et al. 
2000; Bentley et al. 2003; Knudson et al. 
2005; Price et al. 2008; Richards et al. 
2008; Bastos et al. 2011) in studies from 
different parts or the world such as Af-
rica (Cox and Sealy 1997; Stanley et al. 
2003), Europe (Schweissing and Grupe 
2000; Haak et al. 2008; Richards et al. 
2008; Knudson et al. 2012b; Kendall et 
al. 2013), Asia (Haverkort et al. 2008; 
Mitchell and Millard 2009; Gregoricka 
2013; Kenoyer et al. 2013), both Amer-
icas (English et al. 2001; Hodell et al. 
2004; White et al. 2007; Andrushko et 
al. 2009; Eerkens et al. 2010; Price et al. 
2010; Thornton 2011; Wright 2012) and 
Oceania (Bentley et al. 2007; Shaw et al. 
2010; Shaw et al. 2011). Isotope studies 
use material from different historical pe-
riods, starting from the beginnings of the 
human species (Horn et al. 1994; Sillen 
et al. 1995; Sillen et al. 1998) and pre-
history (Haak et al. 2008; Haverkort et 
al. 2008; Gregoricka 2013), through the 
Middle Ages (Mitchell and Millard 2009; 
Knudson et al. 2012b; Kendall et al. 
2013) up to contemporary times (Voer-
kelius et al. 2010; Holobinko 2012).

Strontium isotopes – basic 
information 

Strontium is an alkaline metal, natu-
rally occurring in the form of two min-
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erals: strontium sulphate (SrSO4), also 
called celestine, and strontium carbonate 
(SrCO3), also called strontianite. Of all 
strontium isotopes, the most important 
and longest-lived ones include 84Sr, nat-
urally occurring in 0.56%, 86Sr, which 
constitutes 9.87% of total quantity of 
strontium in the environment, 87Sr with 
an abundance of 7.04% and 88Sr with an 
abundance of 82.53% (Schweissing and 
Grupe 2000; Audi et al. 2003; Bentley 
2006; Kenoyer et al. 2013). Among the 
above isotopes, 87Sr deserves special at-
tention. Although a  long-lived form of 
the element, it is formed by radioactive 
decay of another element, namely rubid-
ium (87Rb; half life 4.88 x 1010) (Price et 
al. 2000; English et al. 2001; Knudson 
et al. 2005; Price et al. 2006; Thornton 
2011). Rubidium is also an alkaline el-
ement, a  component of many minerals 
such as muscovite or biotite, and – due to 
the aforementioned dependency between 
rubidium and strontium – the measure-
ment of its abundance is strictly connect-
ed with the discussed subject (Capo et 
al. 1998; Price et al. 2002; Bentley 2006; 
White et al. 2007). In all research con-
cerning the application of strontium iso-
tope analysis in migration studies, the 
unknown is expressed as the ratio of the 
two aforementioned isotopes, namely the 
heavier isotope 87Sr to the lighter isotope 
86Sr (e.g. Faure 1986; Price et al. 2000; 
Wright 2005b). The natural ratios found 
in such analysis is generally contained 
within the 0.700–0.750 range (Price et 
al. 2002; Kenoyer et al. 2013).

The use of isotope studies in the con-
text of tracing movements of prehistoric 
populations results from geographical 
variability of measured levels of 87Sr/86Sr 
between distant environments. The var-
iability of strontium isotope ratios de-
pends on several factors associated with 

geological characteristics of the site, and 
location-specific 87Sr/86Sr ratio results 
from the age and type of the parent rock 
(Price et al. 2006; Kenoyer et al. 2013; 
Thornton 2011). Strontium isotope ra-
tio is modified so that, depending on the 
type of bedrock, other initial values of 
87Sr/86Sr are observable, which vary over 
the time in which 87Rb becomes trans-
formed into 87Sr. Such dependence equal-
ly indicates an important relationship to 
initial 87Rb concentration and 87Rb/86Sr 
proportion to the source material (Fau-
re 1986; Price et al. 2000; English et al. 
2001; Budd et al. 2004; Hodell et al. 2004; 
Wright 2005a; Price et al. 2006; White 
et al. 2007; Price et al. 2010; Thornton 
2011; Knudson et al. 2012a; Gregoricka 
2013). If there is no flow of Rb and Sr 
between the rock and the environment 
present during the rock formation, 87Sr 
increases at the expense of 87Rb, and the 
percentage of other strontium isotopes 
in the rock remains unchanged. Conse-
quently, Rb/Sr ratio measurements are 
already used in geochronology (Stern 
and Hedge 1985; Capo et al. 1998; Bent-
ley 2006; Kenoyer et al. 2013).

Rocks formed more than 100 million 
years ago and characterised by a  high 
original Rb/Sr value have a  relatively 
high proportion of heavier strontium 
isotope to the lighter strontium isotope, 
ranging from 0.7010 to 0.740. Newer 
rocks which were formed less more than 
1–10 million years ago contain a  rela-
tively low Rb/Sr ratio, and have a lower 
87Sr/86Sr proportion, i.e. between 0.702 
and 0.704 (English et al. 2001; Bentley 
2006; Price et al. 2006; Gregoricka 2013; 
Kenoyer et al. 2013). The question of 
rock origin, inextricably linked with the 
interdependence between both elements, 
is also significant. Small amounts of ru-
bidium are present in the Earth’s man-
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tle, but its large deposits are found in the 
crust. Rocks from the continental crust 
such as granite or rhyolite contain large 
amounts of 87Rb, which is manifested in 
high isotope values of about 0.716. Min-
erals which originated from the Earth’s 
mantle contain little 87Rb, consequent-
ly demonstrating low 87Sr/86Sr ratio, as 
exemplified by volcanic rocks of isotope 
levels ranging from 0.703 to 0.704 (Ho-
dell et al. 2004).

Isotope levels of the hydrological 
component result from the isotopic con-
tributions from the atmosphere and, 
for the most part, of mineral weather-
ing products. In large water basins, the 
87Sr/86Sr level is a product of the impact 
of weathering on the continental crust 
of the entire planet. The mixing of water 
provides the stability and independence 
of the above values from the depth and 
geographical location of deposits. In our 
planet’s history, the 87Sr/86Sr ratio for 
water was subject to variation, as can be 
found by analysing marine carbonates. 
Currently it equals 0.7092 (Capo et al. 
1998; Ehrlich et al. 2001; Hodell et al. 
2004; Knudson et al. 2005; Gregoricka 
2013).

Biochemical characteristics 
of the osteological material 

Biochemical tests on historical human 
remains may be based on bones and 
teeth owing to their molecular struc-
ture (Bentley 2006; Lee-Thorp and Sealy 
2008; Chenery et al. 2010; King et al. 
2011). Bones are composed of miner-
al and organic fraction, each carrying 
different biochemical information (De-
Niro 1987; Hedman et al. 2002; White 
et al. 2004a; Niedźwiedzki and Kuryszko 
2007). The bone mineral, a non-soluble 

crystalline lattice, is built from apatite of 
a general formula Ca10(PO4)6(OH)2. Ap-
atite is modified as necessary by various 
processes occurring in the body. Stron-
tium and its isotopes, due to their strong 
chemical similarity to calcium and its 
atomic radius (Sr 1.32 Å, Ca 1.18 Å), be-
come incorporated in the crystalline lat-
tice by substituting calcium. Strontium 
concentration in hard tissues ranges 
from 40 to 400 ppm (Faure 1986; Price 
et al. 2000; Schweissing and Grupe 2000; 
Knudson et al. 2005; Wright 2005a; Fen-
ner 2008; Richards et al. 2008; Thornton 
2011; Knudson et al. 2012b; Gregoricka 
2013; Kendall et al. 2013).

The choice of bones or teeth as a ma-
terial for isotope analyses is linked to 
differences in their chemical and phys-
ical structure. The first difference is in 
the proportion between the organic and 
inorganic fraction. Bones are built in ap-
prox. 70% from inorganic ingredients, 
the remainder comprising organic com-
ponents (about 20%) and water (nearly 
10%), whereas enamel is composed in 
97–98% of minerals and in 2–3% of the 
organic fraction (Maziarski and Nowicki 
1954; Pate 1994; Hoppe et al. 2003).

Other differences include the tissue’s 
biological activity after its formation pe-
riod. Having been shaped in the early 
stages of life, enamel remains unchanged 
until death as a metabolically inactive tis-
sue. Since enamel formation phases are 
strongly determined and well-studied by 
researchers, information on strontium 
isotope levels can be precisely referenced 
to a specific period of an individual’s life, 
depending on tooth generation and type 
(Maziarski and Nowicki 1954; Lee-Thorp 
and Sponheimer 2003; Budd et al. 2004; 
White et al. 2004c; Daux et al. 2005; 
Dupras and Tocheri 2007; Haverkort et 
al. 2008). 
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In contrast, bone undergoes ele-
mental remodelling, which involves the 
change of the elemental composition of 
the newly formed hydroxyapatite, de-
pending on the environment in which 
the new crystal is generated (White 
et al. 2004c; Wright 2005a; Price et al. 
2006; Niedźwiedzki and Kuryszko 2007; 
Kenoyer et al. 2013). Bones are contin-
uously remodelled thanks to regularly 
appearing ossification centres, and the 
tempo of the changes is determined not 
only by the metabolic level of the individ-
ual, but also by the type and structure of 
the bone (compact or spongy substance) 
in which they occur. Information on the 
isotope composition of the bone dates 
back to a period of 10 to 20 years before 
the death of the individual, and the re-
modelling process takes longer in adults 
than in children (Schweissing and Grupe 
2000; Hodell et al. 2004; Haverkort et al. 
2008; Stepańczak et al. 2014). 

Diagenesis
The condition of bone material deposit-
ed underground is another important as-
pect of biochemical studies. Taphonomic 
changes which occur post mortem have an 
damaging effect on the remains, and in 
extreme cases prevent researchers from 
drawing reliable conclusions. Detecting 
alterations in the elemental composi-
tion of bones and teeth is a vital part of 
the analysis, as it allows us to establish 
whether the results reflect the intra vi-
tam composition of isotopes. Enamel is 
characterised by a  greater crystallinity 
and lower porosity than bone, which, 
together with a  reduced amount of the 
organic fraction, makes it the hardest 
tissue in the body, relatively resistant to 
post-mortem alterations. Note that al-
though enamel is more likely to retain its 

original biological signal than other parts 
of the skeleton, it does not necessarily 
follow that teeth are completely immune 
to contamination (Maziarski and Now-
icki 1954; Wright and Schwarcz 1996; 
Hodell et al. 2004; Daux et al. 2005; 
Knudson et al. 2005; Wright 2005b; Lee-
Thorp and Sealy 2008).

In comparison to other isotopes used 
in anthropological research, strontium 
isotopes are not as significantly affected 
by diagenetic alterations in the skeleton. 
Therefore, the procedure whereby the 
outermost layers are stripped away and 
the sample is washed with weak acetic 
acid is used to remove major contami-
nation areas, e.g. exogenous carbonates 
(calcite) (Price et al. 2000; Hoppe et al. 
2003; Knudson et al. 2005). Still, the 
issue of contamination must not be ne-
glected, as strontium incorporated in 
tissues post mortem may cause an overes-
timation of the final value, and thus the 
number of local individuals (Bentley et 
al. 2004).

Measurement techniques 
Isotope abundance can be measured with 
several techniques, of which the most 
popular ones are ICP-MS and TIMS. The 
first method involves collecting samples 
e.g. by laser ablation (LA) technique, 
ionisation in inductively coupled plas-
ma (ICP), followed by the separation of 
signals from ions which differ in mass-
to-charge ratio (MS) (Vroon et al. 2008). 
The technique is commonly used in 
a number of fields such as geology, medi-
cal and natural sciences, and when study-
ing historical objects which require both 
qualitative and quantitative analysis of 
elements or isotopes (Wagner and Buls-
ka 1999; Becker 2002; Nowak et al. 2008; 
Szlasa-Byczek et al. 2008). The ICP-MS 
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technique is popular due to low detecta-
bility threshold as well as the capability 
of performing simultaneous analyses of 
multiple isotopes.

Thermal ionisation mass spectrom-
etry (TIMS) provides an accurate meas-
urement of strontium isotope levels, in 
which a strontium ion beam is generat-
ed by passing current through a sample 
placed on a  metal tube. This technique 
is popular for its high sensitivity. Even 
though it requires time-consuming chro-
matic strontium isolation procedures, 
the sample for analysis is free of other 
elements’ ions. The issue of isobaric in-
terference during measurements is mini-
mised when compared to ICP-MS. In ad-
dition, analyses performed by the TIMS 
approach provide points of reference 
for precise measurements of heavy iso-
topes by means of other methods (Wal-
czyk 2004). Figure 1 shows a schematic 
sample preparation for TIMS protocol. 
The entire ICP-MS procedure is radical-
ly simplified and the experiment takes 
less time, so the output is 20–30 samples 
per day. In contrast, for TIMS the value 

is only 4–5 samples/day (Ehrlich et al. 
2001; Walczyk 2004; Vroon et al. 2008).

In order to compare final results be-
tween various research centres, meas-
ured isotope levels are referenced against 
a  standard, usually NIST SRM 987 
(Schweissing and Grupe 2003; Hodell et 
al. 2004; Tung and Knudson 2011; Chen-
ery et al. 2010).

Strontium isotopes and paleo-
environmental background 

The use of isotope techniques in recon-
structing migration processes of human 
populations is based on differences in 
isotope compositions of environments 
in relation to one another. Ultimately, 
isotope levels in bones should corre-
spond to those in food, as the strontium 
released from the substrate is carried 
through the soil, down the food chain, 
and finally to the human body (Figure 
2) (Budd et al. 2004; Hodell et al. 2004; 
Price et al. 2006; Mitchell and Millard 
2009). Therefore a  key step in isotope 
studies, but at the same time one of the 
most problematic ones, is to determine 
the level to be defined as the local value 
to establish whether the analysed sam-
ples represent individuals who inhabited 
the region. Long-lived strontium iso-
topes have a  feature by which they dif-
fer from isotopes of lightweight isotopes 
such as oxygen and nitrogen. This char-
acteristic is the lack of measurable frac-
tionation, a naturally occurring phenom-
enon. Fractionation means that chemical 
compounds containing diverse isotopes 
require supplying a different amount of 
energy to break or form chemical bonds. 
The fractionation process is observable 
when compounds containing different 
isotopes are transferred to a higher lev-

Fig. 1. Sample preparation procedure for TIMS-pro-
tocol measurement
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el in the trophic chain and in the course 
of various biochemical processes, which 
results in a  shift of isotope proportions 
(Schoeninger and Moore 1992; Budd et 
al. 2004; White et al. 2004b; Daux et 
al. 2005). The absence of fractionation 
in the case of strontium isotopes can 
be explained by a  small difference in 
the masses of the various forms of the 
element (Schweissing and Grupe 2000; 
Price et al. 2006; Fenner 2008; Thornton 
2011; Knudson et al. 2012b). Neverthe-
less, it must be noted that while there 
are no changes in isotope proportions 
in consecutive stages of the food chain, 
a reduction of total strontium content is 
noticeable as a result of preferential cal-
cium absorption in the body (Blum et al. 
2000; Balter 2004; Knudson et al. 2005).

There are several methods of deter-
mining local isotope levels. Some tech-
niques are based on descriptive statistics 
(Wright 2005a; Knudson et al. 2012a). 
One of more common methods is to 
classify as non-locals individuals whose 
strontium isotope level falls outside the 

second standard deviation from the mean 
reported for the entire sample (Price et 
al. 1994; Wright 2005a; Waterman et 
al. 2014). The success of this approach 
strongly depends on factors such as the 
number of individuals in the group, the 
percentage of immigrants and the natu-
ral, local isotope variability of the region. 
In some cases, due to variability itself, 
the scope of two standard deviations may 
fail to include total isotope variability of 
the region, and, on the other hand, be 
too broad in reference to the area of in-
terest (Wright 2005a; Shaw et al. 2011; 
Tung and Knudson 2011).

Worth mentioning is also a  method 
based on creating division rows. Data are 
grouped by growing levels, and differ-
ences between adjacent classes are calcu-
lated. The amount of differences is used 
to establish likely immigrants by finding 
outliers (Tung and Knudson 2011).

Another approach is to compare the 
values obtained from human tissues to 
values directly measured in parent rocks. 
As strontium isotope level in living or-

Fig. 2. Strontium transfer between ecosystem components
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ganisms depends on the isotope back-
ground of the substrate, the attempt 
to treat the value as local seems logical 
(Ezzo et al. 1997; Grupe et al. 1997; 
Shaw et al. 2011). Differences across re-
gions may be established on the basis of 
geological sources providing data on the 
age and type of rocks (Hodell et al. 2004; 
Mitchell and Millard 2009).

In practice, the method is far from 
perfect, which results from diverse prop-
erties of minerals forming the bedrock 
as well as complex geological structure 
of the entire area. Certain rock types 
are built of various minerals of different 
composition and properties, which leads 
to erratic distribution of strontium in the 
rock. Such structure may result from the 
presence of several types of feldspars, an 
example of which are gneiss and gran-
ite (Bentley 2006). Minerals such a  bi-
otite, muscovite and K-feldspar are rich 
in strontium–87. Other feldspars, such 
as plagioclase, have high calcium and 
strontium content with little Rb, hence 
low 87Sr/86Sr ratio (approx. 0.700). In 
contrast, potassium feldspars, forming 
a  large percentage of granites, contain 
mostly rubidium but only a  little stron-
tium, which results in high measured 
isotope levels (in the region of 1.0). In 
addition, individual minerals have dif-
ferent susceptibility to environmental 
conditions, e.g. quartz is susceptible to 
weathering only to a small extent, which 
is quite significant for Sr transfer through 
consecutive components of the environ-
ment (Capo et al. 1998; Price et al. 2002; 
Bentley 2006; Sjögren et al. 2009).

The lack of homogeneity of the sub-
strate leads to a high diversity of terrain 
in terms of strontium isotope values, and 
the scale of the diversity may be consid-
ered locally or globally. The extent of in-
ter-regional differences should be high 

enough to enable detection of individu-
als’ relocation, whereas any considerable 
variability of local 87Sr/86Sr values should 
not obscure differences between areas in 
other regions. With  high variability of 
strontium isotopes over a  limited area, 
we may interpret mobility within a small 
territorial range (Hodell et al. 2004; 
Waterman et al. 2014). Accordingly, we 
may notice that simply collecting sam-
ples from geological material and test-
ing 87Sr/86Sr ratio should not constitute 
the only point of reference in migration 
studies, but merely offer an outlook on 
the estimated range of the isotope con-
centration in the environment.

In the case of strongly diversified 
geology of the environment in terms of 
isotopes, the local value may also be de-
termined by measuring surface water, 
soil and plant samples (Budd et al. 2004; 
Hodell et al. 2004; White et al. 2007; 
Knudson et al. 2012b). As part of bio-
sphere, not only does soil absorb Sr from 
bedrock, atmosphere or waters, but also 
acts a strontium donor through mineral 
weathering and the sorptive complex. 
Outside the sorptive complex, plants ab-
sorb Sr from weathered minerals, and, 
to a  large extent, from the atmosphere, 
although it must be stressed that water 
is the key factor determining the value of 
the 87Sr/86Sr ratio in local flora. As a re-
sult, plant and animal tissues reveal high 
uniformity within strontium isotope ra-
tios over the area of investigation (Gosz 
and Moore 1989; Capo et al. 1998; Bent-
ley 2006; Price et al. 2002).

In light of the above information it 
is clear that when determining isotope 
points of reference in reconstructions of 
prehistoric populations’ movements, the 
geological 87Sr/86Sr proportion may differ 
from 87Sr/86Sr in other components of the 
environment, as Sr isotope levels in such 
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components may in reality be a product 
of various isotopes of the same element. 
Geological isotope level is generally dif-
ferent from that of living organisms, 
so the key to obtaining the local value, 
which in the case of local individuals 
will correspond to the values obtained 
for skeletons, is to determine the level 
of biologically available strontium. This, 
in turn, necessitates a thorough analysis 
of the environment and interdependen-
cies between its components (Budd et 
al. 2004; White et al. 2007; Shaw et al. 
2011; Gregoricka 2013; Kenoyer et al. 
2013).

A common method of determining the 
regional value of isotope ratios in migra-
tion studies, not only for strontium, but 
also e.g. for oxygen, carbon and nitrogen 
isotopes, is to analyse animal remains 
from the area on which the graveyard 
was kept (Price 2002; Budd et al. 2004; 
White et al. 2004b; Bentley 2006; Szos-
tek 2009; Knudson et al. 2012b; Shaw et 
al. 2011). A basic method of ascertaining 
the local Sr isotope level involving ani-
mal material is to determine the mean 
for all measurements, with the variability 
range for the entire area restricted to two 
standard deviations. The analyses may 
use contemporary animals or animals 
isochronous to the investigated human 
population (Grupe et al. 1997; Evans and 
Tatham 2004; Price et al. 2010; Gregor-
icka 2013). Local fauna provides a  very 
reliable indicator of biologically available 
strontium, as many animal species live in 
close proximity of humans, and animal 
tissues reflect the natural complexity of 
the environment, especially if they date 
back to the same period as the investigat-
ed human population (Shaw et al. 2011; 
Knudson et al. 2012a).

The number of individuals in the ani-
mal species used as reference material is 

also significant. Some researchers in their 
studies use remains of small animals of 
relatively small feeding area like rodents. 
Another possibility is to examine skel-
etons of larger organisms. Analysis of 
large herbivorous species enables us to 
estimate the regional value for a  larg-
er area, since such animals eat various 
plant species growing all over the region, 
hence the 87Sr/86Sr ratio in their tissues 
is uniform for the entire region (Hodell 
et al. 2004; Knudson et al. 2005; Gregor-
icka 2013; Kendall et al. 2013). On the 
other hand, considering the limited area 
of their habitats, animals such as hares 
constitute potentially useful material 
for calculating the local range of values 
for Sr isotopes (Waterman et al. 2014). 
All of the above factors should be taken 
into account when selecting animals as 
reference material for studying migra-
tion. However, such parameters as ani-
mal size and its metabolic rate are not as 
important in analysing strontium isotope 
levels as in the case of studying oxygen 
isotopes (Budd et al. 2004; White et al. 
2004b; Stepańczak et al. 2014).

The use of animal tissues is beneficial 
also from a  statistical standpoint, since 
even with a  limited amount of materi-
al the data obtained are characterised 
by relatively low standard deviation, 
variance and coefficient of variation; in 
comparison to small animals, values of 
the aforementioned parameters are even 
lower for larger species (Price et al. 2002; 
Haverkort et al. 2008; Gregoricka 2013).

When selecting reference material, 
additional benefits of the indicators of 
local 87Sr/86Sr level found on the site with 
animal skeleton should be considered. 
A distinct advantage of this approach is 
that tissues of animals co-existing with 
human populations represent isotope 
values which correspond to those of lo-
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cal individuals. The reason for the above 
observation is that, unlike in the case of 
contemporary animals remains, there is 
no exposure to contamination by atmos-
pheric strontium, and changes in iso-
tope levels related to the consumption of 
non-local nutrients in the form of fodder 
are limited (Fenner 2008).

Apart from the obvious benefits of 
using local fauna to determine the range 
of isotope variability of the region, there 
are also certain negative aspects. As 
mentioned before, animals living in close 
proximity of humans seem to be best 
indicators of local values. Such animals 
include, among others, cattle or pigs. Be-
cause of their dietary requirements and 
the fact that they often consume food al-
most identical to that eaten by humans, 
the isotope ratio of strontium measured 
e.g. in swine bones may be very precise 
and decisive in reconstructing the mobil-
ity of the population. Nevertheless, de-
pending on the adaptive strategy of the 
group (nomadic or settled) or cultural 
determinants, some animal species are 
treated not only as food, but also as trib-
ute, frequently playing complex roles in 
cultural and religious life (Bentley 2006; 
Bentley et al. 2007; Shaw et al. 2010; 
Shaw et al. 2011; Thornton 2011). This 
is best exemplified by pigs kept by tribes 
living in the Pacific, in which pigs were 
collected and exchanged as an indicator 
of social status. As a consequence, stron-
tium isotope values obtained from pig 
remains show greater diversity than hu-
man tissues, which renders then useless 
in migration studies (Shaw et al. 2011; 
Thornton 2011).

There are multiple factors affecting 
the 87Sr/86Sr value which might suggest 
that the individuals moved during their 
ontogeny, although in fact they stayed 
in the same place (Figure 3). Establish-

ing the economy, key nutrients or cul-
tural behaviour is sometimes crucial for 
the correct interpretation of the results. 
Other sources of strontium in diets of 
certain populations may be related to 
the inclusion of Sr isotopes from other 
environments, which is a  consequence 
of seasonal grazing in regions of differ-
ent 87Sr/86Sr ratios or growing plants at 
certain distance from the settlement due 
to their requirements concerning e.g. 
soil type, and, last but not least, hunting 
for animals periodically present in the 
region (Wright 2005a; Andrushko et al. 
2009; Tung and Knudson 2011; Knudson 
et al. 2012a).

The purpose of testing animals for 
isotope levels in tissues is not only to 
establish their local range, but also to 
reconstruct foreign policy and diploma-
cy. Mass feasts were often occasions on 
which standard diet was extended by 
luxury products, which could lead to the 
inclusion of non-local food. The origin 
of animals which were given as a gift to 
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Fig. 3. Exemplary factors of Sr variability in human 
bones
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hosts in certain populations may shed 
light on the range of political and eco-
nomic contacts of the population (Thorn-
ton et al. 2011; Knudson et al. 2012a).

Factors affecting local isotope 
levels 

The diversification of dietary compo-
nents by introducing imported products 
exerts a significant impact, particularly in 
communities existing since the Middle 
Ages. The intake of products of non-uni-
form origin results not only in change in 
isotope level to a value different from lo-
cally established, but may also provide an 
explanation for the convergence of such 
values between two distant sites (White 
et al. 2007; Kendall et al. 2013).

The consumption of marine food such 
as fish, seafood or seaweed, which has sig-
nificant influence on strontium isotope 
levels in tissues by bringing the 87Sr/86Sr 
ratios in bones and teeth closer to those 
measured in seawater, must not be over-
looked (Knudson et al. 2005; Andrushko 
et al. 2009; Shaw et al. 2011; Knudson et 
al. 2012b; Gregoricka 2013). In addition, 
one must also consider the importance 
of atmospheric sources of strontium. In 
the case of coastal ecosystems, the air 
is enriched by aerosols from the breeze, 
which directly affects the soil, plants and 
land mammals, including humans, in 
a similar way as eating marine food. Note 
that precipitation in the vicinity of wa-
ter regions demonstrates isotope ratios 
approximating those of the nearby water 
basin, but final strontium content is low-
er by several levels of magnitude (Capo 
et al. 1998; English et al. 2001; Hodell 
et al. 2004; Shaw et al. 2011; Knudson 
et al. 2012b). The concentration of indi-
vidual isotopes at the site may be altered 

not only by the proximity of large water 
basin as seas and oceans. Weathering 
of minerals of different groups than the 
parent rock may be equally responsible 
for this phenomenon, as the products of 
this process are also supplied to plants 
from the air (Hodell et al. 2004).

Strontium is, to a  large extent, ab-
sorbed by organisms together with min-
erals, e.g. in the form of salt. Among 
other elements, salt includes calcium, 
which is often substituted by strontium 
(Wright 2005a; Andrushko et al. 2009; 
Knudson et al. 2012b). In the history of 
our species, sea or land salt was a  pre-
cious raw material, which is best proven 
by the fact that it was transported over 
very large distances. In certain commu-
nities the possibility of including salt in 
the diet resulted from an individual’s 
high socio-economic status, because salt 
was treated as a luxury commodity. This 
may have caused some of the differences 
in isotope levels in human tissues with-
in a single population. This relationship 
holds true for many other foodstuffs 
such as cacao (Wright 2005a; Knudson 
et al. 2012b). In situations like these, it 
is helpful to reconstruct trade routes or, 
as in the case of salt, the locations where 
it was mined or dried.

Strontium is consumed in large 
amounts along with calcium-rich prod-
ucts, which apart from salt, include 
eggs, milk and milk products. In addi-
tion, plants growing on calcium deposits 
contain values similar to plants such as 
maize, which are fertilized with substanc-
es with high Ca content. When a plant 
like maize, requiring substances contain-
ing calcium for its normal growth, con-
stitutes the main component of the diet, 
such  foreign substances should be con-
sidered the key determinant of the iso-
tope level of the skeleton (Schutkowski 
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2001; 2002; Szostek et al. 2005; Wright 
2005a; Shaw et al. 2011; Knudson et al. 
2012b).

Analysing honey is an interesting 
method of determining reference val-
ues for strontium isotopes in migration 
studies (Voerkelius et al. 2010). Honey is 
made from flower pollen and secretions 
of insects which feed on plants. Due to 
its flavour, nutritional and therapeutic 
properties, honey is a  highly valued el-
ement of human diet, largely thanks to 
about 300 chemical substances it con-
tains. Apart from sugars, its ingredients 
include micro- and macronutrients, and 
strontium in the amount of 1.02–30.67 
mg kg–1 (Hernández et al. 2005; Chudz-
inska and Baralkiewicz 2010; Shantal 
Rodríguez Flores et al. 2014). When col-
lecting nectar, honey bees are exposed 
to every part of the environment such as 
water, air or soil. It is estimated that the 
area covered by these animals is about 7 
km2, so honey tests reveal the range of 
the variability of isotope ratios from the 
specified area. The usefulness of honey 
as the indicator of the local 87Sr/86Sr lev-
el is additionally enhanced by the fact 
that the honey-making process is totally 
independent from humans or other pro-
duction technologies (Rashed and Soltan 
2004; Hernández et al. 2005; Madejczyk 
and Baralkiewicz 2008; Schellenberg et 
al. 2010; Chudzinska and Baralkiewicz 
2010; Chudzinska and Baralkiewicz 2011; 
Chua et al. 2012; Yücel and Sultanoğ-
lu 2013; Shantal Rodríguez Flores et al. 
2014). A drawback of honey as reference 
material is the fact that, along with min-
eral substances and other ingredients, it 
contains anthropogenic contaminations 
modifying strontium levels (Sanusi et 
al. 1996; Négrel and Deschamps 1996; 
Probst et al. 2000).

Isotope analysis 

Investigating migrations and interpret-
ing the results may take place on several 
levels. One of the possibilities is to con-
duct a  detailed analysis of individuals 
in groups, involving measurements of 
several samples collected from one skel-
eton. Such tests, performed on the lev-
el of an individual, enable us to recreate 
the history of a human being. A popula-
tion-level study provides the observation 
of relationships between individuals and 
reconstructing various patterns of behav-
iour of individuals within the population. 
In contrast, inter-group comparisons en-
able the group to be set off against oth-
er populations (Schweissing and Grupe 
2000; White et al. 2004c; Dupras and 
Tocheri 2007; Haverkort et al. 2008; 
Szostek, 2009). Isotope tests are based 
on the principle that the isotope ratio in 
tissues of local individuals should vary in 
the range defined as local, whereas the 
87Sr/86Sr ratio for individuals of allochtho-
nous origin will fall outside the defined 
limits (Price et al. 2000). However, the 
above principle is not straightforward. 
There might have been migrations with-
in a  certain population, but they could 
remain undetected, as the variability of 
87Sr/86Sr across various areas is relatively 
low, which often complicates reliable in-
terpretation on the basis of gathered data 
(Spence and White 2009). An important 
step is to determine to what extent the 
diversity of 87Sr/86Sr levels results from 
the individuals moving in relation to ge-
ologically varied surroundings, and to 
what extent it corresponds to local var-
iation between individuals (Shaw et al. 
2011). When comparing isotope ratios 
of human skeletons with the range of bi-
ologically available strontium, one must 
remember that not all strontium from 
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the region is absorbed by the body, but 
only the 87Sr/86Sr proportion which holds 
for the food (Tung and Knudson 2011).

If several samples from the same skel-
eton are analysed, there is a possibility of 
verifying the places where the individual 
lived at consecutive stages of his or her 
ontogeny. Differences in 87Sr/86Sr meas-
ured in bones relative to values reported 
for enamel, which carries information on 
the individual’s dwelling place in child-
hood, suggest not only the individual’s 
mobility, but also the duration since the 
dwelling location had been changed (Ho-
dell et al. 2004; Knudson et al. 2005). 
Elemental remodelling in bones is a con-
tinuous and long-term process. For this 
reason, the time during which individual 
resided in the area in which the remains 
were found is one of the factors affecting 
the 87Sr/86Sr ratio in bones. Accordingly, 
isotope levels in tissues approximating 
the range defined as local may indicate 
a  relatively long dwelling period of the 
individual in the same region. The prin-
ciple behind this is that bone remodel-
ling process led to a partial substitution 
of strontium isotopes for those of local 
origin. An alternative explanation is time 
spent in a location with a similar level of 
87Sr/86Sr to that of the investigated area 
(Price et al. 2000; Spence and White 
2009). Unfortunately, due to the bone 
remodelling process, obtaining informa-
tion on short-term migration episodes in 
the life of analysed individuals is impos-
sible (White et al. 2004c; Andrushko et 
al. 2009; Mitchell and Millard 2009).

Oxygen isotopes

Migration analyses with the use of isotope 
techniques may be conducted not only by 
measuring 87Sr/86Sr ratios, but also pro-
portions of other isotopes, e.g. oxygen 

(Longinelli, 1984, McGlynn, 2007). Ge-
ographical diversity of oxygen isotopes, 
expressed by the value δ18O[‰], depends 
on weather conditions such as tempera-
ture or total annual precipitation; hydro-
logical conditions and landform features; 
and involution processes (Stepańczak 
2012; Stepańczak et al. 2014; Szostek 
2009). The variability of isotope ratios 
is closely connected with the presence of 
isotope fractionation, which additionally 
results in changes in δ18O across trophic 
forms (Stepańczak et al. 2013; Szostek et 
al. 2014). As a consequence of a different 
cause for changes in 87Sr/86Sr and δ18O, 
the use both elements’ isotopes allows 
us to draw more accurate conclusions on 
the origin of individuals, as in such case 
both climate and geology of the site are 
taken into account. Therefore, a common 
practice is to conduct analyses which 
combine both elements (White et al. 
2007; Fenner 2008; Mitchell and Millard 
2009; Spence and White 2009; Price et 
al. 2010; Knudson et al. 2012a; Kendall 
et al. 2013).

What follows naturally is the ques-
tion of the elements whose isotopes pro-
vide better representation of changes sig-
nificant for a specific migration analysis. 
There are no unanimous opinions on this 
matter. In the case of oxygen isotopes, 
deviations from local values may be 
caused by e.g. the breastfeeding process, 
differences in metabolic rate between 
organisms, differences between sexes, 
history of diseases, diets and food prepa-
ration methods as well as climate trans-
formations (White et al. 2004b; White et 
al. 2004c; Thornton 2011; Brettell et al. 
2012; Roberts et al. 2013). On the other 
hand, some researchers claim that oxy-
gen isotopes are easier to interpret, as 
δ18O oscillations measured in one area 
are not as high as for strontium (Budd 
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et al. 2004). In addition, if food was ex-
changed between various centres, the ex-
change interfered more with strontium 
than oxygen isotope levels, as the main 
source of oxygen in the body is supplied 
by water rather than by solids (Kendall 
et al. 2013).

Lead isotopes

Lead is another isotope whose ra-
tios can be useful in the research dis-
cussed (Gulson et al. 1997; Macfarlane 
1999; Kamenov et al. 2002; Knudson 
et al. 2005). To this end 208Pb/204Pb and 
206Pb/204Pb ratios are analysed. Like stron-
tium isotopes, the ratios result from the 
age of formation of a given rock and the 
decomposition of other elements, which 
in the case of lead, are uranium and tho-
rium. The results obtained from such 
analysis also seem complementary with 
measurements of 87Sr/86Sr ratios. Never-
theless, the application of lead isotopes 
in studying migrations in a given area re-
quires the presence of a rock containing 
Pb, and the risk of sample contamination 
by anthropogenic lead must be consid-
ered.

Isotopes applications in mobility 
analysis

Discovering the phenomenon of migra-
tion in the course of a  study in archae-
ology or cultural anthropology makes it 
impossible to recreate cultural character-
istics typical of the population. The sim-
plest statement that can be made is that 
factors triggering migrations are simulta-
neously components of the population’s 
life, and that there are conclusions to 
be drawn from them. The environment 
affects population through landform 
features, climate, presence of mountain 

ranges etc. Cultural and social aspects 
are connected with the type of economy, 
grazing, military conflicts or religious 
events. For this reason analyses of pop-
ulation movements reveal dependencies 
which indicate ethnic assimilations, pol-
itics, economic relationships or natural 
disasters (Anthony 1990; Ezzo and Price 
2002; Haverkort et al. 2008; Kendall et 
al. 2013).

A considerable advantage of isotope 
tests is the fact that they may prove con-
clusive on matters of origin when objects 
found in the grave are missing or lead to 
ambiguous conclusions, and also in situ-
ations when historical documents or ar-
chaeological evidence are incoherent and 
they cannot fully confirm the occurrence 
of migration (Schweissing and Grupe 
2003; Knudson et al. 2004; Knudson et al. 
2005; Andrushko et al. 2009; Kendall et 
al. 2013; Kenoyer et al. 2013). Schweiss-
ing and Grupe (2003) presented results 
of their analysis of the origin of the in-
habitants of the Roman province Raetia 
II. The sample included 70 individuals, of 
which 18 females, 41 males and one skel-
eton of unknown origin. The origin of 
the population was tested by two meth-
ods. The first one was based on the anal-
ysis of archaeological finds, whereas the 
other one on skeletons’ 87Sr/86Sr isotope 
values. The results of both analyses are 
presented in Figure 4 as percentages of 
individuals who arrived in the province 
from outside locations. The conclusion 
that can be drawn from the findings is 
that in both cases the allochthonous or-
igin of certain inhabitants could only be 
ascertained thanks to isotope tests. Note 
also that whenever isotope levels border 
on the local level, archaeological artefacts 
may prove helpful in correctly interpret-
ing the data obtained in the tests.
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A juxtaposition of biochemical results 
with biological data (such as age or sex), 
traces of traumas and archaeological in-
formation such as grave context allows 
researchers to recreate the migratory 
behaviour of the population. One of the 
possibilities emerging from studying the 
mobility of individuals is recreating of 
the group’s social structure (Ezzo and 
Price 2002; Budd et al. 2004; White et 
al. 2004c; Bentley 2006; Price et al. 2010; 
Shaw et al. 2011). Role division in a soci-
ety such as patriarchy or matriarchy may 
manifest itself in varied origins of indi-
viduals. Female migrations frequently 
observable in populations occurred large-
ly for matrimonial purposes. Marriage 
was very often seen as a kind of payment 
or a manifestation of political relations. 

Conclusions on women’s allochthonous 
origin may be drawn if females indicate 
a different place of birth than males and 
children in the group, and the fact that 
the female sex in the population was mi-
grating may indicate patriarchal struc-
ture of the society (Gorokhov et al. 2001; 
Haak et al. 2008; Andrushko et al. 2009; 
Shaw et al. 2011; Kenoyer et al. 2013). 
A  unique arrangement of skeletons of 
grave locations may suggest a  specific 
lineage of the individuals. Obtaining in-
formation on the common origin of the 
inhumed individuals may indirectly con-
firm familial relationships (Grupe et al. 
1997; Scheeres et al. 2013). 

A study by Mitchell and Millard 
(2009), in which the discussed technique 
was applied, was aimed to establish the 
origin of individuals buried in the times 
of crusades in Jerusalem. The aforemen-
tioned historical period was noted for 
the European populations’ tendency to 
move eastward. The phenomenon affect-
ed many social groups such as knights, 
merchants or pilgrims. An attempt to re-
construct the place of origin of the indi-
viduals on the basis of their inhumation 
site and its equipment is largely compli-
cated, since the burial location was deter-
mined not by origin but wealth and the 
socio-economic status gained in the tar-
get location. Measuring isotope ratios of 
human remains enabled the researchers 
to conclude that the individuals found 
at the site came mostly from France or 
other parts of Europe. The authors paid 
special attention to one case, which was 
characterised by a  rarely reported level 
of 87Sr/86Sr, thanks to which it can be as-
sumed that the person had lived either in 
Norway or in Central Alps.

At the end of the 20th century, in the 
Tisenjoch mountain range in the Alps 
male remains dating back to 5000 years 

Fig. 4. Non-local female and male individuals de-
termined using archaeological and anthropo-
logical – stable isotopes methods in Bavaria 
during the late Roman period based on table 3 
in Schweissing and Grupe 2003

*Those results argue with common knowledge 
about women’s movement between populations 
(f.eg. Shaw et al. 2011). In this case both sex were 
mobile and came from geologically different regions
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ago were found. Because of the unique 
character of Ötzi (also called “Iceman”), 
his body and belongings were careful-
ly investigated. In order to determine 
the location of the individual’s origin, 
enamel, dentine and bone samples were 
collected from the skeleton, and subse-
quently subjected to isotope analysis. 
Samples of soil, water from nearby riv-
ers and contemporary human teeth were 
used as background material in the study 
(Hoogewerff et al. 2001; Kutschera and 
Müller 2003; Müller et al. 2003). Having 
analysed the enamel, the researchers re-
ported that the 87Sr/86Sr ratio in Ötzi was 
in line with the strontium isotope level 
measured for the region in which he had 
been found. Still, higher values obtained 
from the man’s bones suggested that for 
the last 10–20 years of his life the Iceman 
had been migrating or feeding in a loca-
tion geologically different from that of 
his childhood. Finally, on the basis of the 
entire set of test, it was concluded that 
Ötzi had presumably been born approxi-
mately 10–20 km from the town of Mera-
no in northern Italy (Müller et al. 2003).

Summary 
This article focused on the relationship 
between two strontium isotopes, 87Sr 
and 86Sr, and on the possibility of their 
application in tracing human migration. 
Certain strontium isotopes are not sub-
ject to measurable isotope fractionation. 
Although Sr isotope ratios used in mi-
gration analyses do not undergo fraction-
ation, values of other isotopes, name-
ly δ88/86Sr, do vary in trophic networks 
(Knudson et al. 2010). Physiological 
preference for the lighter isotope leads to 
augmented levels of δ88/86Sr in organisms 
situated on a  lower level in the trophic 
chain. A similar situation can be observed 

in the soil (substrate)/plants system. 
A  reduction in the above value due to 
fractionation proceeds in the same man-
ner, with certain geographic differences, 
albeit smaller than those between high-
er- and lower-level consumers (Halicz et 
al. 2008; de Souza et al. 2010; Knudson 
et al. 2010). In addition, it was report-
ed that fractionation and, ultimately, 
the extent of the relationship discussed 
in this study, is influenced by tempera-
ture, which also provides an opportunity 
to draw conclusions on the paleoclimate 
(Fietzke and Eisenhauer 2006; Rügge-
berg et al. 2008). Last but not least, dif-
ferences in δ88/86Sr and 87Sr/86Sr ratios 
occur for different reasons, therefore the 
changes in the proportions in the two 
isotope pairs may vary.

Isotope analyses relating to human 
and animal migrations present complex 
problems. Most of them may be solved 
by improved analytical procedures or in-
strumentation, but certain issues – like 
correct determination of local isotope 
levels and boundaries of the area regard-
ed as local – still remain open (Bentley et 
al. 2004). Moreover, changes tracked in 
tissue isotope levels provide information 
not exactly on the individual’s move-
ments, but on varying source of diet, 
which may (but need not) be related to 
migration.

Analyses based on isotopes of various 
elements involve not only bone material, 
but to an equal extent also fingernails, 
hair or other preserved tissues such e.g. 
skin (Schoeninger and Moore 1992; Wil-
son et al. 2007). In conclusion, it should 
be emphasised that isotope tests are 
becoming popular not only due to the 
possibility of analysing tissues of organ-
isms, but also of tracing material goods 
that may indicate inter-group relations or 
trade routes (English et al. 2001; Eerkens 
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et al. 2010) and, due to hugely success-
ful contemporary analyses, are applied 
in investigating food products (Rummel 
et al. 2010; Voerkelius et al. 2010; Liu et 
al. 2014), as well as in criminal forensics 
(West et al. 2009; Holobinko 2012). 
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