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Abstract: The present study aimed at describing the anti-Müllerian hormone (AMH), with special focus 
on molecular background for ovarian activity, in particular the role AMH plays in sex determination and 
gonadogenesis process in early stages of prenatal life and folliculogenesis in postnatal life. It is a review of 
the literature currently indexed and abstracted in MEDLINE, SCOPUS and Google Scholars. The process 
of sex determination and gonad differentiation occurring during embryogenesis was discussed along with 
underlying molecular mechanisms. In the postnatal life the impact of AMH on the process of folliculogenesis 
was described. Clinical use of recent findings was shown as well. Genetic studies and molecular analyses 
have demonstrated that AMH is highly conservative, indicating its significance in reproductive process on 
the background of evolutionary processes. 
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Ovarian activity regulation by anti-Müllerian 
hormone in early stages of human female life, 

an overview

Introduction

Anti-Müllerian hormone (hereinafter 
called AMH) was discovered by German 
medicine professor Peter Müller (1801–
1858). He worked on embryology at the 
University in Bonn. He was able to ob-
serve pairs of structures characteristic 
of early fetal development and unknown 
substance acting on these structures. In 
1940, Alfred Jost first described a sub-
stance of nuclear origin and influencing 
regression of Müllerian ducts. In 1986 
Cate et al. identified and described the 
substance. Genes responsible for AMH 
expression have been isolated from hu-
man DNA.

Human gene coding AMH is locat-
ed on the shortest arm of the 19 p.13.3 

chromosome and it consists of 5 exons 
(Cohen-Haguenauer et al. 1987). The 
last codes the domain with C-terminus. 
AMH is a dimeric glycoprotein consisting 
of 560 amino acids, classified in the be-
ta-TGF superfamily. An AMH molecule 
occurs in a precursor form. It contains 
two domains: a larger one, containing 
N-terminus region and a substantially
smaller one, ended with a C-terminus.
Primary form of the molecule possess-
es both domains bound by a non-cova-
lent bond (AMHNC). After proteolytic
enzymes cut the bond, the mature end
with C-terminus and the proregion with
N-terminus are bound with a disulfide
bridge. It has not yet been determined,
when proteolysis takes place-during hor-
mone secretion or in the target tissue.

https://doi.org/10.2478/anre-2018-0026
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Materials and methods

A literature search was performed of 
SCOPUS, PubMed, and Web of Science 
reviews for the years 2000-2017 un-
der the following key phrases/words:  
<AMH in sex determination>, <AMH 
and gonad differentiation>, <AMH and 
folliculogenesis>, <AMH and in vitro 
fertilization (IVF)>,  <AMH and follicle 
stimulating hormone (FSH)>, <AMH 
and androgens>. The following filters 
were used: abstract; full text; published 
in the last 10 years, women.

Relevant manuscripts were identified 
and then performed secondary reviews of 
referenced articles, which previously had 
not been known or preceded the searched 
time period. A total of  89 publications 
were reviewed. The procedure of search-
ing the existing literature is shown in 
Fig. 1.

The flow diagram depicts the screen-
ing process of retrieved articles, includ-
ing the number and reason of exclusion.

Sex determination and gonadogenesis

AMH is synthesized in male embryos 
by Sertoli cells and in cooperation with 
testosterone produced by testes it main-
tains differentiation of male reproducti-
ve organs. AMH influences regression of 
Müllerian ducts, which constitutes the 
first stage of sex determination in the so-
matic aspect. The influence of testostero-
ne results in Wolf ducts transformation 
into vas deferens (Birk et al. 2000). In the 
prenatal development of female embryos, 
AMH is found in trace amounts along 
with formation of ovarian reserve, which 
will constitute reproductive potential 
from puberty until the complete expira-
tion of ovarian activity in women during 
menopause.

Transformation of the primary, inac-
tive form of AMH molecule facilitates 
attachment to the receptor and release 
of ligand, mature homodimer with C-ter-
minus and proregion with N-terminus 
(di Clemente et al. 2010). Comparative 
model for AMH has been created based 
on human bone morphogenetic protein 
BMP-9, also included in beta-TGF super-
family. Perhaps the wrist site consisting of 
a prehelix loop and alpha-helix and form 
of concave fingers of the second mono-
mer in AMH molecule constitutes the 
element that connects with the AMHRI 
receptor, while residues in the wrist site 
connect with AMHRII. All mutations in 
this region may lead to serious phenotyp-
ic and eventually sexual disturbances.

Anti-Müllerian hormone, also known 
as MIS (Anti-Müllerian Inhibiting Sub-
stance) is not species specific. Gene read-
ing is equal for all species, and the tran-
scription level mainly differs in terms of 
specific regulatory proteins connecting in 
the promoter region and due to the site 
and time of activation of signal cascades 
for the activation of AMH secretion. AMH 
coding gene as ortholog, is present in 
numerous mammal species, certain fish 
species, amphibians and reptiles, such 
as kangaroos, salamanders, alligators 
and sturgeons. An interesting discovery 
consisted of the fact of cloning AMH in 
fishes, which do not possess Müllerian 
ducts. It is suspected that the presence 
of AMH is associated solely with the pro-
cess of gonad differentiation (Pfennig et 
al. 2015).

The present study aimed at describing 
the role of AMH, with special focus on 
molecular background for ovarian activi-
ty, in particular the role AMH plays in sex 
determination and gonadogenesis pro-
cess in prenatal life and folliculogenesis 
in postnatal life. 
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oviducts, uterus and upper portion of 
vagina is automatically activated in the 
absence of Sry gene. This has turned out 
not to be as obvious for humans, as the 
commencement of female developmental 
pathway, differentiation and stabilization 
of ovaries, seems to require the presence 
of several transcription factors (Tevosian 
2013; Lin and Capel 2015; Biason-Lauber 
and Chaboissier 2015).

Primary urogenital system of a fetus 
is of mesodermal origin. During organo-
genesis, pairs of protrusions are formed 
from the epithelium that lines the body 
cavity, which form the precursor of the 
developing urogenital system. In the 
course of subsequent differentiation, 
they are transformed into Wolf ducts and 
an even meso-kidney. It consists of three 
segments: pronephros, mesonephros and 
metanephros.

Approximately 4 weeks after fertil-
ization, strands of cells appear on both 
sides of mesonephros, known as genital 
ridges, which will become populated by 
primary sexual cells-gonocytes of endo-
dermal origin. About 5 weeks after fer-

Sexual determination of a developing 
embryo is strictly associated with the sex 
chromosome profile and depends on the 
presence of Y chromosome containing 
the TDF-Testis Determining Factor re-
gion (Nussey and Whitead 2001). Here, 
the SRY protein coding genes are present: 
The SRY factor initiates differentiation of 
Sertoli cells, already in a bipotential go-
nad of the embryo. These will constitute 
nearly half the volume of testes. These 
cells commence AMH secretion approxi-
mately 55–60 days after fertilization. This 
process is activated with approx. one 
week delay relative to Leydig cells that 
produce testosterone. The time and site 
for initiation of secretion of key hormones 
for the development of male embryo is 
significant due to the negative feedback 
of their influence in the implementation 
of male developmental pathway. 

The process of female development 
appears to be more complex for humans 
than previously thought. Observations 
conducted on rodents suggest that the 
process of ovarian differentiation and 
transformation of Müllerian ducts into 

Figure 1. Flow diagram of literature review
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mentation and regression giving the onset 
of the ovarian medulla, along with vascu-
larized stroma. At the same time, cortical 
cords are created from the proliferating 
gonad epithelium. They will give the be-
ginning of a line of granular cells, which, 
by forming a single layer around oogonia 
will form primordial follicle with theca of 
follicle. This takes place around 10 weeks 
after fertilization. First primordial follicles 
are formed in fetal ovaries approximately 
15–16, while ready Graafian follicle in 23–
24 week post fertilization (Reynaud et al. 
2004). Due to proliferation of granulosa 
cells, granular and thecal layer are formed, 
which constitute important sources for se-
cretion of steroid hormones and AMH.

The moment of AMH expression 
during embryogenesis is of key signifi-
cance. The time shift associated with dif-
ferentiation of male and female fetus may 
be associated with the fact of AMH in-
fluence on regression of Müllerian ducts. 
AMH receptors located on cellular mem-
branes of Müllerian ducts of a female fetus 
are subject to regression. In this manner, 
even trace amounts of AMH produced by 
granular cells of the forming follicles can-
not have a destructive impact on Mülleri-
an ducts, which are then transformed into 
oviducts, uterus and the upper portion of 
vagina. AMH production is detectable in 
24 week of gestation in granular cells of 
preantral follicles (Kuiri-Hanninen et al. 
2011). In both sexes, initiation of AMH 
transcription is subject to a strict control 
in terms of place and time. It is of key im-
portance for normal development and for-
mation of the most important biological 
function of organisms-reproduction.

Mechanism of molecular regulation

Determination of the direction and sexu-
al determination during embryogenesis 

tilization, primary sex cords differentiate 
from the epithelium lining the body cavity, 
which constitute the scaffolding for gono-
cytes. This process initiates formation 
of morphologically undifferentiated go-
nads. Expression of Sry gene in a XY fetus 
promotes differentiation of testes with a 
network of ducts assuming the form of a 
horseshoe. Leydig cells are formed from 
the epithelium of sex ridges and are of 
mesenchymal origin. Eight weeks post 
fertilization, testosterone secretion be-
comes activated. Sertoli cells are differen-
tiated from epithelial mesoderm, which 
commence AMH secretion at approx. one 
week time interval relative to Leidig cells. 
In the embryogenesis process, under the 
influence of maternal estrogens, pairs of 
germs of Müllerian ducts are formed from 
mesodermal epithelium.

Functional development of a gonad 
takes place about 7 weeks after fertiliza-
tion, which is exhibited via secretion of 
trace amounts of estradiol by as yet phe-
notypically undifferentiated gonads. It 
should be emphasized that at the same 
time, testis commence testosterone pro-
duction. Forty-five days since the begin-
ning of human embryogenesis, ovary is 
identifiable only because the gonad has 
not yet transformed into early testes. In 
the third trimester of gestation, in the case 
of absence of SRY protein female develop-
mental pathway becomes activated and go-
nads differentiate into ovaries, regression 
of Wolf ducts is activated and Müllerian 
ducts begin development towards forma-
tion of oviduct, uterus and upper portion 
of vagina (Munsterberg and Lovell-Badge 
1991). Approximately 5–6 weeks after fer-
tilization the primary sex ridges, and then 
sex cords with primary sexual cells initiate 
formation of ovary, which will constitute 
the source of AMH secretion. The Wolf 
ducts degenerate. Cords undergo frag-
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cells will be responsible for secretion of 
AMH, an important regulator during im-
plementation of developmental programs 
(different for both sexes) and the func-
tional performance of the reproductive 
system.

Research has confirmed that the pri-
mary sex determination associated with 
chromosome Y, activating programmed 
cascade of molecular interactions is more 
conservative than previously thought.

Gonad differentiation

The process of formation and stabili-
zation of initially bipotential gonads in 
humans commences on the 32 day post 
fertilization. Numerous transcription fac-
tors are activated during embryogenesis, 
which activate the process of develop-
ment and differentiation. Several genes 
were distinguished in research conducted 
on mice, such as: Lh9, Gata4, Emx2, Wt1, 
Chx2, Nr5a and Six1/4, influencing forma-
tion of bipotential gonads in embryos of 
both sexes (Svingen and Koopman 2013). 
WT1 (+KTS) and LH9 bind and activate 
the Sf1 gene promoter. Similarly, Cbx2 
will activate Sf1 expression. Emx 2 is re-
sponsible for normal proliferation at the 
early stage of gonad development, further 
contributing to the signal reaction of the 
developmental pathway of supporting 
cell line, which will commence secretion 
of AMH at a different time and site of 
gonadogenesis. This is of particular im-
portance, as they are differentiated at an 
earlier stage than germ cells. First, Sertoli 
cells and then granular cells are formed. 
SOX9 and SF1 initiate expression of AMH 
(MIS) gene. AMH, by binding with AMH-
RII receptor commences signal via acti-
vation of AMHRI. AMH is regulated by 
SF1 and other transcription factors such 
as WT1(+KTS) and GATA4. Activation 

take place already in first weeks after fer-
tilization. In the initial stage of develop-
ment, i.e. approx. 6 weeks, bipolar, phe-
notypically undifferentiated gonads are 
formed. The genetic program of a fetus is 
determined by a set of sex chromosomes: 
XY, XX imposes the sex determination 
direction, provided the developmental 
process has normal course. This consists 
of numerous genetic and signaling con-
nections with synergistic or antagonistic 
relationship, regulating the correct deve-
lopmental pathway.

Chromosome Y determines the de-
velopmental processes of a male fetus by 
recording the Sry gene, coding the TDF 
(Testis Determining Factor). Formation 
of programmed testes requires activation 
of such factors as NR5A1, SF1 incorporat-
ing them in the expression of Sox9 gene 
which is of key significance for the subse-
quent reactions. The activated signaling 
cascade acts as positive or negative inter-
action of factors or reactions. As a result 
of activation of developmental program 
for male fetus by Sry gene, the possibil-
ity for activation of reactions for female 
developmental pathway is automatically 
terminated (Barrionuevo 2005; Vidal et 
al. 2001; Chaboissier et al. 2004).

Absence of Sry gene results in signal-
ing activation characteristic of initiation 
of the development of ovaries and re-
pressing effect for activation of nuclear 
signaling network. In Vertebrata, sexual 
determination of gonads is associated 
with determination of lines of germ cells: 
spermatozoa or oocytes (de Falco and 
Cambel, 2009). 

System of supporting cells, Sertoli and 
granular cells, is activated, which, at lat-
er stages of development, in relationship 
with the hypothalamic-pituitary-gonadal 
axis will play the key regulatory and en-
docrine role. Both types of supporting 
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located on membranes of thecal cells of 
the theca and granular cells of ovarian 
follicles (Juuula et al. 2012).

Cells of the developed follicular ap-
paratus exhibit high dynamism, partici-
pating in cyclical transformations under 
the impact of hormones and successfully 
entering the pathway of apoptosis. This 
process commenced in embryonic life will 
cease only during menopause. In 18 week 
of gestation, ovaries contain 7 million fol-
licles (te Velde and Pearson 2002). Go-
nads of female fetus contain as many as 
1–2 million of them. Before a girl attains 
sexual maturity, they will amount to 400 
thousand, and after menopause approx. 
1000 follicles will remain in the ovaries. 
Value of AMH concentration is reduced 
during embryonic life, as well as after the 
birth (Lasala et al. 2011; Lukas-Croisie 
et al. 2003; Rey et al. 2006). Numerous 
transcription factors participate in the 
process of primary follicle formation, 
whose expression and signal reactions 
have not been fully researched (Fowler 
et al. 2009). FIG-alpha is one of the fac-
tors with real impact on the process of 
primary follicle formation that has been 
discovered (Soyal et al. 2000). The tran-
sition from primordial to primary stage of 
a follicle is regulated by key transcription 
factors: NOBOX, SOHLH1 and SOHLH2. 
GDF9 (Laitinen et al. 1998; Dong et 
al.1996) and BMP15 (Di Pasquale et al. 
2004) factors regulate the development 
of preantral and antral follicle. At this de-
velopmental stage, attained in 24 week of 
gestation, the follicle commences AMH 
secretion. AMH regulates follicle recruit-
ment and transition to the subsequent 
developmental stage via inhibition of 
FSH receptors, which may lead to selec-
tion of one, that will attain the stage of 
Graafian follicle and will become released 
during ovulation (Durlinger et al.1999, 

of signaling elements takes place on the 
basis of positive and negative regulation 
correlation. AMH results in regression of 
Müllerian ducts formed during embryo-
genesis and development of XY fetus. 
Pdgf and Dhh, genes are also expressed in 
Sertoli cells, which subsequently contrib-
ute to the process of Leydig cells forma-
tion, where the steroidogenesis process 
further includes SF1. Testosterone secre-
tion initiates directional organization of 
testes and development of internal gen-
ital organs (Tanaka and Nishinakamura 
2014). Following formation of testes and 
involution of Müllerian ducts, AMH will 
remain at a stable, relatively low level. In 
female fetus, approx. 10 weeks post fer-
tilization and regression of AMH recep-
tors in cellular membranes of Müllerian 
ducts, the neutral gonad differentiates 
into ovary. This process is automatically 
activated in the case of absence of SRY 
and signal cascade associated with the 
protein, leading to testes differentiation. 
Wnt4 and Rspo1 and the negatively cor-
related beta-catenin effector substance 
activate the program for female develop-
mental pathway. Expression of the Fox 
gene is activated in the postnatal period 
and it becomes a part of maintaining fe-
male developmental pathway. Analogous 
function is played in male fetus by the 
Dmrt1 gene.

Folliculogenesis and anti-Müllerian 
hormone

Thirty two weeks post fertilization, the 
process of development of female gonad 
is accomplished. From this moment, ova-
ry in correlation with the hypothalam-
ic-pituitary axis assumes its key endo-
crine function. Pituitary gland of female 
fetus produces gonadotropic hormones, 
FSH and LH, which act through receptors 
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al. (1994) and di Clemente et al. (1994). 
Genomic sequence recording AMHRII is 
located on chromosome 12 (13q12) and 
it consists of 11 exons. 3 first constitute 
the record of extracellular domain, 4 
exon is a transmembrane domain while 
7 remaining ones-intracellular domain. 
The sequence is 8.7 kb long. AMHRII are 
present in Müllerian ducts and gonads 
of both sexes (Baarends et al., 1994; di 
Clemente et al. 1994). AMH type II re-
ceptors have also been found in the en-
dometrium (Renaud et al. 2005) and in 
mammary and prostatic glands (Hoshiya 
et al. 2003). AMH type I receptor in com-
bination with AMHRII participates in 
signal transfer.

The fact of a different interaction be-
tween sexual cells and AMH secretion 
in Sertoli and granular cells during go-
nadogenesis leads to interesting obser-
vations. They have been confirmed by 
the study conducted by Behringer et al. 
(1990) on transgenic mice. It has been 
demonstrated that Sertoli cells can sur-
vive independently, even if reproductive 
cells have been damaged or destroyed, 
while granulocytes in the case of female 
line have a different behavior. 

High AMH levels appear to be toxic 
for oocytes undergo premature meiosis. 
Concentration of the hormone in the fol-
licle within specified time interval may 
be slightly increased and toxic for germ 
cells. It is suspected that this mechanism 
constitutes a certain type of regulation, 
optimizing time and site of subsequent 
developmental processes. 

AMH concentration reflects secretion 
of only those follicles that are vascular-
ized. Despite the auto-and paracrine se-
cretion, AMH value in blood serum re-
flects well the pool of ovarian follicles 
(La Marca, Sunkara 2014).The hormone 
influences aromatase inhibition in gran-

Visser et al. 2006). AMH secretion by 
preantral and small antral follicles occurs 
independently of the influence of FSH. 
Follicles in excess of 8 mm are FSH-de-
pendent. The increasing level of FSH at 
the follicular stage influences increase of 
estrogen concentration, which, acting via 
negative feedback influence the decrease 
of AMH concentration in the follicle. It 
has been demonstrated that the level of 
AMH correlates with the concentration 
of estrogens in small antral follicles. This 
statement is confirmed by observation of 
polymorphisms occurring in AMH and 
AMHRII receptor. Damaged genes influ-
enced the clear decrease of the level of 
E2. Action of AMH is based on its affin-
ity to AMHRII receptor, which attaches 
functionally to AMHRI. The formed com-
plex triggers tyrosine phosphorylation 
reaction, leading to commencing reaction 
via SMAD protein activation. They are 
involved in transfer and transduction of 
signal in cellular nucleus, influencing the 
transcription of target genes by attaching 
to specified elements of the promoter. 
The initialized signal cascade is accompa-
nied by elements with activator and effec-
tor functions (Shi and Massague 2003). 
SMAD are associated with transferring 
signal to the nucleus and are activated 
solely by ligands of the large beta-TGF 
family (Massague et al. 1996). AMHRII 
receptor possesses affinity to one ligand 
type, contrary to AMHRI, which attaches 
to several types of ligands. Type I receptor 
is common for selected factors belonging 
to the beta-TGF superfamily, including 
human bone morphotic factor BMP, apart 
from AMH ligand it may attach e.g. ALK, 
corresponding to BMP. AMHRI could 
probably result in a defective or lethal 
morphogenesis of bones. AMH type II re-
ceptor was discovered and cloned by two 
independent research teams: Baarends et 
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developmental and control processes. Re-
search on the seasonal variability of AMH 
concentration was conducted by Dennis 
et al. (Dennis et al. 2012), which trans-
lates into better understanding and di-
recting reproductive processes and thus-
the reproductive success. 

AMH regulates ovarian follicle re-
cruitment for subsequent stages of follic-
ulogenesis via reduction of their sensitiv-
ity to FSH (Durlinger et al. 2002; Visser 
et al. 2006). This process requires strong 
molecular basis in the form of a range of 
transcription factors, which will imple-
ment the process by means of positive or 
negative regulation. The fact that AMH is 
highly conservative in evolutionary terms 
allows to assume that the above present-
ed developmental process with its contri-
bution appears to be most advantageous 
in biological terms.

Recent studies on women with polycys-
tic ovaries (PCOS) who have higher level 
of androgens have shown that early follicu-
lar growth may be promoted by androgens 
(Fig. 2). During the pre-antral (gonado-
tropin-independent) follicle growth, FSH 
stimulates follicle growth via theca cell-de-
rived androgens. Selected androgens may 

ular cells, which converts androgens to 
estrogens via blockage of cytochrome ex-
pression (Grossman et al. 2008).

Interesting variability is expressed 
by AMH depending on the season of the 
year, which is associated with exposure 
to sunlight and expression of D3dihy-
droxyvitamin. 25OH-D influences neg-
ative regulation of AMH via AMHRII 
receptor mechanism and SMAD 1/5/8 
protein mediation (La Marca, Sunk-
ara 2014, Su et al. 2014; Gassner et al. 
2014). As an effect of D3 vitamin, ex-
pression of the receptor gene is reduced, 
SMAD phosphorylation is reduced and 
its location in the nucleus is altered. Re-
productive potential is increased due to 
repression properties of AMH and reduc-
tion the sensitivity of AMHRII receptor 
and SMAD proteins by 25OH-D. This is 
exhibited by a more efficient differentia-
tion of granular cells in the follicle and 
enables their major portion to develop 
properly. This increases the chance for 
the selection of the best dominant folli-
cle during ovulation. Reproductive po-
tential increases significantly, as 25OH-D 
concentration correlates negatively with 
the level of AMH, balancing inhibition in 

Figure 2. Working  model showing how selective androgens appear capable of improving early stages of 
folliculogenesis. See text for explanation. Modified after Lebbe and Woodruff (2013).
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Experimental studies

AMH, as a member of a large family of 
molecular growth factors beta-TGF, con-
stitutes an important component in the 
control over the ovarian follicle pool, 
occurrence at trace amounts and for a 
short period during prenatal develop-
ment, determs correct course of a range 
of interactions implementing genetically 
programmed sex determination pathway, 
while in the reproductive period it consti-
tutes a significant regulator of the ovari-
an balance (Yigong S, Massagué J. 2003).

AMH molecular model, due to high-
ly conservative C-terminus of its mole-
cule, constitutes the object of scientific 
research and investigations. A series of 
studies utilizing animal models were con-
ducted, which have proven that the evo-
lutionary process adopted and fixed main 
regulatory mechanisms in the process 
of developmental pathway realization. 
In certain species, they have undergone 
some modifications, yet a common trend 
has been observed in the field of function 
of AMH in the majority of Vertebrata, in-
cluding humans.

exert effects via androgen receptors (AR) 
through transcriptional regulation but 
also via enhanced FSH receptor expression 
modulating follicle stimulating hormone 
(FSH) activity in granulosa cells. The AMH 
is produced by preantral and small antral 
follicles. AMH through the inhibition of 
FSH receptors regulates premature recruit-
ment of ovarian follicles. FSHR expression 
/ activation occurs under androgen control. 
AMH inhibits the conversion of androgens 
to estrogens by blocking the expression 
of aromatase induced by FSH (Lebbe and 
Woodruff 2013).

The relationship between anti-Mulle-
rian Hormone and FSH and their effect 
on the regulation of steroid hormones 
is shown in Fig. 3. Positive or negatively 
conjugated loops maintain balance during 
folliculogenesis limiting excessive recruit-
ment of ovarian follicles. The maintenance 
of the proper concentration of androgens 
and estrogens in the individual stages of 
ovarian follicle development is responsible 
for the regulation of the menstrual cycle 
and ovulation. The effect of androgens on 
the expression of AMH has not been fully 
understood yet (Dewailly et al. 2016).

Figure 3. Relationship between anti-Müllerian hormone and FSH and their effect on the regulation of ste-
roid hormones during early stages of folliculogenesis. See text for explanation. Modified after Dewailly et 
al. (2016).
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morphism in prenatal development due 
to the effect of AMH. Time shift caused 
by varying AMH coding gene expression 
is of high significance. In Sertoli cells it 
is activated on 8 week post fertilization, 
whereas in female fetus this process takes 
place on 24 week in granular cells of the 
formed ovarian follicles. AMH actively 
participates in the process of folliculo-
genesis, which is the expression of high 
evolutionary specialization (Durlingr et 
al. 2002).

The carboxylic portion of the AMH 
glycoprotein molecule remains strong-
ly conservative in evolutionary terms, 
which is confirmed by the comparison 
of amino acid sequence between: mouse 
and human and mouse and cattle in 
terms of the percentage contribution of 
homologues: 95% and 94 % of homol-
ogy. The minor differences between the 
species stem from the respective 5 and 6 
changes in the group, which comprises 
approx. 106 amino acids.The presence 
of cysteine has also been considered, as 
it is highly valuable as predictor of evo-
lutionary conservationism (Cate et al., 
1986).

The observed pattern of gene expres-
sion: amh, sox9a, sox9b and cyp19a1a and 
regulatory reaction in the zebrafish com-
ply with that observed for mammals, 
thus confirming the conservatism of the 
expression pattern. However, different 
species may exhibit various regulatory 
mechanisms and interactions between 
genes, as in the case of e.g. chicken or 
alligator embryos, where amh expression 
precedes sox9 expression (Smith et al., 
1999, Western et al.,1999, Oreal et al., 
2002).

AMH constitutes a negative regulator 
of the CYP19a1 gene in mammal ovarian 
follicles. The product of the gene expres-
sion is aromatase, an enzyme controlling 

The human gene coding AMH has the 
length of 2.8 kb (Cate et al. 1989) and 
it is mapped in the 19p.13.3 position. It 
has been cloned for numerous mammal 
as well as fish, salamander, reptile and 
bird species (Halm et al. 2007; Pala et al. 
2008). The expression pattern of genes 
coding AMH is similar in Vertebrata, yet 
the expression method and certain mod-
ifications in the genomic sequence read-
ing stem from species particularities.

It has been determined that the or-
tholog group is characterized, similarly 
to humans, regression of Müllerian ducts 
during the embryogenesis of the male sex. 
This includes a marsupial-tammar walla-
by (Pask et al. 2004), American alligator 
(Western et al. 1999) or chicken (Car-
ré-Eusèbe et al. 1996; Neeperet al. 1996). 
This observation has not been confirmed 
in representatives of such species as Cau-
data amphibia, Pleurodeleswaltl, the Iberian 
ribbed newt, representatives of salaman-
ders. Male individuals retain Müllerian 
ducts (Al-Asaad et al. 2013). The discov-
ery of AMH orthologs among teleost fish-
es came as a surprise, for which AMHRII 
genes could be cloned and full regression 
of Müllerian ducts was observed. 

In fishes, AMH plays the key role for 
proliferation of reproductive cells and go-
nad maturation. This allows to conclude 
that in the course of evolution, AMH 
was responsible for an increasing range 
of molecular reactions. This is confirmed 
by the fact that in higher vertebrates, the 
scope of AMH effect has covered regula-
tion of the follicular system in the ova-
ries of adult females (Visser and Them-
men 2005) or control of Leydig cells in 
males (Racine et al. 1998). Its previous 
role was limited solely to the function of 
differentiation of bipolar gonads. Regu-
lation of human embryogenesis enables 
confirmation of the fact of high sexual di-
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productive age (van Rooij et al. 2002; van 
Rooij et al. 2005) and for prediction of 
time to menopause (Tehrani et al. 2013). 
It has been observed that AMH concen-
tration is subject to minor fluctuations 
during menstruation cycle, which is not 
of clinical importance (van Disseldorp et 
al. 2010; La Marca et al. 2013.) The hor-
mone maintains its high diagnostic value.

Determination of AMH serum concen-
tration is used for the basic examination of 
patients with suspected granular cells can-
cer (Gustafson et al. 1992; Long et al. 2000). 
AMH is used for standard IVF procedures, 
where it constitutes the main diagnostic el-
ement for determining causes for infertility 
(Alvaro Mercadal et al. 2015). Depending 
on the hormone level determined, and the 
use of other diagnostic tools, the cause is 
determined with high likelihood, which 
greatly facilitates treatment. 

Diagnostic methods

The lack of uniform standards for labora-
tory determinations constitutes a disput-
able issue. Results obtained differ mark-
edly, and depend on the applied method 
and laboratory tools. Clinical centers es-
tablish own norms used to compare the 
obtained results, yet different sensitivity 
of applied systems disables comparison 
of results in the global aspect.

The Beckman-Coulter Gen-II system 
utilizes the developed DSL antibodies 
(Li et al. 2012; Han et al. 2014), howev-
er, a precise determination according to 
the rhAMHImmunotech curve requires 
repetition of the procedure to eliminate 
additional reaction with the comple-
ment. Results of AMH determinations 
turned out to be approx. 22–40% high-
er in comparison to the results with the 
use of previously used, I generation sys-
tem (Wallace et al. 2011).Widely used 

conversion of androgens to estrogens. 
This female steroid hormone affects re-
productive success. Expression of the 
Sox9b gene-regulating AMH expression, 
occurs directly in the ooplasm of oocytes, 
which appears to favor directional regula-
tion of the AMH in the correct place and 
time. (Rodriguez-Mari et al. 2005)

The research team of Rodriguez-Mari 
(2005), who carried out molecular test-
ing on the zebrafish obtained results that 
have confirmed the similarity concerning 
AMH expression in human granular cells 
of ovarian follicles, from the fetal live, 
through reproductive period until the 
menopause (Lasala et al., 2004). Identi-
cal AMH expression pattern was deter-
mined in the granulosa cells in both test-
ed cases, with differences of histological 
nature being determined. The result sug-
gests that genes coding AMH sequence 
originate from a common ancestor to 
fishes and humans, thus confirming the 
role fulfilled by the AMH in reproductive 
process.

Clinical studies

Determination of the AMH level in hu-
mans is increasingly commonly applied 
in highly developed countries. In clinical 
practice, determination of AMH serum 
concentration is applied primarily for the 
procedures of assisted reproduction per-
formed in larger clinical centers. 

AMH constitutes a stable marker re-
flecting normal prenatal sexual develop-
ment (Josso et al. 2012; Rey and Grin-
spon 2011). The diagnostic value of AMH 
further includes postnatal developmental 
disorders, in particular of boys at prebu-
pertal age (Grinspon and Rey 2010; Rey 
et al. 2013; Rohayem et al. 2015). 

AMH is widely used for determina-
tion of ovarian reserve in women at re-
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pression. This hormone, indispensable 
for the process of sexual formation and 
regulation of male and female embryo, 
acts according to different signal pat-
terns. In those processes, cascades of bio-
chemical reactions are activated, includ-
ing transcription factors, cofactors, signal 
proteins and genes themselves. Positively 
or negatively coupled interaction loops in 
biological processes realize genetic pat-
tern for differentiation, development and 
maintaining of the reproductive potential 
in the adult life.

This conservative regulatory mecha-
nism, with the important role of AMH, 
is observed in the majority of Vertebrata.

A more extensive use of AMH diag-
nostic value in the future may contribute 
to better understanding of processes as-
sociated with dysfunction of the repro-
ductive system and fertility disorders.
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