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Spatial Quantile Regression

Abstract

In a number of applications, a crucial problem consists in describing and
analyzing the influence of a vector, ®f covariates on some real-valued
response variable ;YIn the present context, where the observations are made
over a collection of sites, this study is more difficult, due to the complexity of the
possible spatial dependence among the various sites. In this paper, instead of
spatial mean regression, we thus consider the spatial quantile regression
functions. Quantile regression has been considered in a spatial context. The
main aim of this paper is to incorporate quantile regression and spatial
econometric modeling. Substantial variation exists across quantiles, suggesting
that ordinary regression is insufficient on its own. Quantile estimates of
a spatial-lag model show considerable spatial dependence in the different parts
of the distribution.

1. Introduction

1.1 Linear Regression - introduction

Linear regression is the standard tool for many empirical studies. When
the relationship between a dependent variapleand a set of explanatory
variables, X, can be written asy= XS +u, a simple ordinary least squares
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(OLS) regression of y on X can provide unbiasedredes of the parametef,
and a predicted valug,= X3

This heavy reliance on linear regression modelsbess carried over to
the analysis of spatial data. The most commonlyd usgatial model adds
a weighted average of nearby values for the depgndmiable to the list of
explanatory variables:

y=pWY+XS5+u. 1)

In this model, W is a “spatial weight” matrix that specifies the
relationships between observations. W is a “spatigight matrix” with rows
that sum to one and zeros on the diagonalspdada parameter measuring the
strength of the relationship.

The model can be useful when X does not fully antdor the tendency
for the dependent variable to be highly correlatedr space, so that nearby
values of Y provide significant explanatory pow&he endogeneity of WY
poses challenges for estimation. Most empiricalliegiions are based on
maximum likelihood estimation of the model undez #tsssumption of normally
distributed errors. Other approaches are basecstnuimental variables (IV)
estimation, usually with spatially lagged values<afsuch as WX and WWX) as
instruments for WY. Several researchers have Usedpatial AR model as the
basis for quantile regressions in which bptAndg are allowed to vary across
guantiles.

Typical specifications of the spatial weight matabe based on first-order
contiguity when the data are drawn from geograpimits such as counties or
census tracts. Though the approach is used lessiaoiy for point data, typical
specifications are similar in that the spatial Wsgare assumed to decline
rapidly with distance between observations.

Predicted values are then based on
(1) the structural model
Y(7) = PWY + X8
(2) the reduced form
Y(7)=(1 - W) XB
(3) or a decomposition into “trend” and“signal” cpaments
Y(7) = XB+ (I - V) XB
Spatial effects generally appear as noise arousphtal trend that looks
much like the predicted values from an OLS regoessf Y on X. The objective
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of a regression analysis is to estimate the coeffis,p andp, and to obtain
predictions ofy at given values oX.

Regression analysis is not well suited to explanine distribution of
a variable. When the predicted values from a reipasare y = X3, then the
distribution of the predicted values simply mimitdse distribution of the
variables in X. The implied effect of a change ineoof the explanatory
variables is to cause parallel shift of ¥ by an amount determined by the
variable’s estimated coefficient. Though a paradleift may be reasonable in
some cases, it is limitation that a research mayvwaat to impose beforehand.

1.2. Quantile Regression

Quantile regression is a method for estimating tional relations
between variables for all portions of probabilitystdbution. Typically
a response variabl¥ is some function of predictor variablée Regression
application focus in estimating rates of changeshs mean of the response
variable distribution as some function of a sepmadictor variables. In the other
words the function is defined for the expected gadfiY conditionalX, E(Y |X).
Regression analysis gave incomplete picture of rdlationships between
variables especially for regression models witleta@geneous variances.

Quantile regression was developed as an extensithie dinear model for
estimating rate of change in all parts of the histion of response variables.
The estimates are semi parametric in the sensenthparametric distributional
form (eg. normal, Poisson, negative binominal,)@s&cassumed for the random
error part of the modet, although a parametric form is assumed for the
deterministic portion of the model (eGXo + £1X1). The conditional quantiles
denoted byQ,(7]X) are the inverse of the conditional cumulativetadbution
function of the response variablt'ay_l(T|X), wheret 00, 1] denotes quantile
rank.

The quantile model posits thi& quantile of Y conditional on x to be,
Q(tlx) = a(t) +xB(1) , 0 <T < 1. @)

If B(t) is a constanf, the model reduces to the standard conditional
expectation model, E{X) = a +xB, with constant variance errors. Whp(t)
depends om, the model allows the distribution of Y to depesrdx in different
ways at different parts of the distribution. Thaditional linear model can be
viewed as a summary of all the quantile effectat ib,jQ(r‘x)dr = E(Y|x) :
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Under this interpretation, traditional analysis desinformation due to its
aggregation of possibly disparate quantile effédisny different quantile paths,
for example, can lead & = 0. On the one han@, = 0 can meanxdoes not
matter — does not affect the distribution of Y. Butan also mean there are
important but compensating quantile effects retplinand x.

Quantile regression is much better suited to aivadyguestions involving
changes in the distribution of a dependent varia®lgantile regressions allow
for separate effects of an explanatory variable different points of the
dependent variable distribution. The coefficientineates are then frequently
interpreted as being analogous to standard liregression estimates, albeit for
different points in the distribution of the depenteariable (Trzpiot 2008, 2009
a, b, ¢, 2010, 2011 a, b).

It is less commonly recognized that quantile regjoes can produce
estimates of changes in the full distribution cé drependent variable when the
values of the explanatory variables change. Thefsebefficients produced for
independent variables imply a change in the fulstrdbution dependent
variables.

Special issues do not necessarily arise when dstignagquantile
regressions using spatial data. Several researbbhgesproposed variants of the
spatial autoregressive (AR) modgl= o0WY + X[ +u, for quantile analysis.

These procedures treM/Y as just another endogenous explanatory
variable. The spatial AR model may not necessaglyhe best choice for spatial
modeling, particularly for large data sets compgsindividual geographic
points rather than large zones or tracts. In saoatwhere the distribution of the
dependent variable changes smoothly over spacenparametric procedure
may be a much better approach.

2. Distribution of the Dependent Variable

In general, the conditional quantile function fogiyen a set of variables
X can be written:

Q,(r]X) = XB(1]X), 0<r<1. (3)

Usually, we have limited our attention to a smaiinber of values for the
guantile, . Focusing on that values provides useful infororatabout the
distribution of the dependent variable given valagX, but it certainly does not
provide a complete picture of the full distributiofy.



Spatial Quantile Regression 269

One way to use quantile regression estimates talaienthe distribution
of the dependent variable is to draw randomly fruossible values of and then
estimate a separate quantile regression for eakle wd 7. For example, we
might draw 1000 values af from a uniform distribution ranging from 0 to 1,
i.e., 7~ U(0, 1). If we letd represent the number of draws from the U(0,1)
distribution, then we have:

éy(rj\X):xB(rj|X) i=1,.., (4)

With J estimates of the condjtional quantile in hand, andard kernel
density function can be applied M,B(Tj|X) to estimate the density function
for the dependent variable. Since quantile estisnate generally fairly smooth
across, drawing multiple values af from a U(0,1) distribution is a very
inefficient way of constructing the density funetioUsing a limited range of
value for7is more efficient. For example, we might resttie estimates ta, ,
or a still more limited set of values for that pides good coverage of the set of
permissible values for. Since quantile estimates are likely to have \ggh
variances at extreme valuesmfuch as 0,01 or 0,99, it generally is a good idea
to trim the extreme observations if a grid of valigused for.

3. The Effect of a Discrete Changein an Explanatory Variable

Quantile regression estimates can have interestnpdications for the
distribution of y values even in a model with a single explanatorsiade.
Consider a model witk explanatory variable in addition to the intercejfter
estimating quantile regressions fbguantiles, the predicted values for quantile
are simplys:

Q| X)= A1) + BT )X+t BT )%, (=100 ()
When simplified the notation by replacir;@(rj|X) with B(7 ), but it
should be clear that the estimates depend on theradd values of X. Even in

the single-explanatory case where k = 1, the irdpdifect of changing from to
produces] separate values for

Qr,[X, % =3) = K1)+ BTG+t BT )%, =1, (6)
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Q1| X, % = &) = (1)) + B(1))d +.. A B(T)%, =1, (D)

With J quantiles anah observations, equation (6) and (7) implyvalues
for the conditional quantile functions. Sincg(7;)is not constant, the
conditional quantile functions imply a full disttition of values foy even when
X is the only variable in the model.

4. Quantile version of the Spatial AR Model

The analysis up to this point has not been explispatial. Although the
explanatory variables might include measures oks&do various amenities
such as a city’s central business districts, parkfgkes, nothing yet is unique to
the analysis of spatial data. Several attempts Hmeen made to adapt the
standard spatial autoregressive (AR) model for tjlgaregression.

The spatial AR model adds a weighted average ofbgeealues of the
dependent variable to the list of explanatory J@déa. The model is written
y = pWY+ X3 +u, whereX is the nxk matrix of explanatory variabley, is
the dependent variable, and/ is an nxn matrix specifying the spatial
relationship between each valueYoand its neighbors.

Suppose the observations represent census trdcteach tract is
contiguous to four other tracts, théy = Y4 for each of the four tracts that is
contiguous to observatianandW; = 0 for all other values gf In this example,
each of the n elements BfY is simply the average, for each observation, of the
four neighboring values of. More generally, if observationis contiguous to
other tracts, thedVj = 1/n; for the tracts that are contiguous to observatiamd
W = 0 otherwise. For point dat&yY might form a weighted average of the
nearesK neighbors, or the weights might decline with dis@WY is clearly
an endogenous variable. Indeed, one interpretafidiY is that it is the set of
predicted values from kernel regressions Yofon the set of geographic
coordinates. For example, suppose we were to wtite f (lo,,1a,) +u,. If we
use a rectangular kernel with a very small windaze %.9., the four closest
observations — then the cross-validation versiontle kernel regression
estimator is

.19
J==> 1y, 8)
LE
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where |, indicates that observation is one of the nearest neighbors to
observationi, and indicates the number of observations thatbairg given
weight when constructing the estimate for obseowati Not surprising, adding
the predicted value of as an explanatory variable fgroften produces highly
significant results.

Although the spatial lag variablgyy, is formally equivalent to a kernel
regression, the approaches could hardly be moferelift in spirit.

The spatial AR model is based on an assumptiontligatesearcher can
truly specify the full spatial relationship betwealh of the observations. After
specifying the entire path by which eachnobbservations can influence all of
the other observations, all that is left is to dmiee the strength of the
relationship by estimating

In contrast, nonparametric and semi-parametricessions involve far
less difficult. We could easily write the modelsemiparametric form as

y; = f(lo,la) + X, 8+u 9)
or in the conditionally parametric form
y, = X,A(0, la) +u,. (10)

The spatial AR model is based on the assumptionttiearesearcher can
specify a simple parametric function that accouiots both the relationship
betweenX andY and the entire spatial relationship between alleoksions.
Nonparametric approaches are based on an assuntipiibthe researcher can
correctly specify the variables that influentebut they allow for local variation
in the marginal effect oK onY. The spatial AR model and its variants may be
useful in situations where the objective is to reate a causal relationship
betweenY and neighboring values of the dependent variable.

4.1 Quantile Regression with an Endogenous Explanatory Variable

The spatial AR model is most commonly estimatednigximizing the
log-likelihood function that is implied under thessamption of normally
distributed errors. An alternative approach basedhe generalized method of
moments method allows the model to be estimatatyusivariant of two-stage
least squares (2SLS). In the first stage, the eswimgs variable WY, is
regressed on a set of instruments.
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The predicted value dVY is then used as an explanatory variable in the
second stage regression. Most researchers Xys&VX, and, sometimes,
additional orders of the spatial lags sucMA&X as instruments foNY.

Though this method can work well when the goabisdtimate a standard
regression, quantile regression may be more compkpause instrumental
variables are needed fdfY when estimating a regression for each quantile,

Two methods have been used to form the instrumeatébles needed
these quantile regressions. The simpler versionpngsosed by Kim and Muller
(2004). Their approach is a straightforward extemsif 2SLS.

For each value of, they first estimate a quantile regressionér using
the set of instruments (e.g,andWX) as explanatory variables. The predicted
values from the quantile regression aMéY(7). In the second stage, they
estimate another quantile regression for the saahee\ofr, this time withY as
the dependent variable akcandWY(7) as the explanatory variables.

Only 10 quantile regressions are needed to estirttegemodel for 5
guantiles (e.gs = 0,10, 0,25, 0,50, 0,75, 0,90). Zietz et al. @0éand Liao and
Wang (2012) use this approach to estimate quaveiisions of the spatial AR
model. They use bootstrap procedures to constraictiard error estimates.

Though somewhat more complicated, the Chernozhukad Hansen
(2006) approach may be more robust than the KimMmnlter (2004) approach
because it does not require that the same qudilesed in both stages of the
procedure.

An additional advantage is that Chernozhukov anchsda present
a covariance matrix estimate that is easy to coaistr

In the version describe here, the predicted val\éy,, from an OLS
regression oMWY on the instruments are used as the instrumentablarfor
WY. This instrumental variable is then used as anlasapory variable for
a series of quantile regressiovis- /WY of onX andWY The same quantile,
T, is used for each of the regressions, while a gfidlternative values issed
for p. The estimated value pfis the value that produces the coefficient\ilY
that is closest to zero. After findigy the estimated values @fare calculated
by a quantile regression of — QWY on X. The motivation behind this
estimator is a property of twg;stage least squarbgn instruments are chosen
optimally, the coefficient odlNVY will be zero when both the actual variable,
WY, and the instrumental variable are included iagaession.

Standard error estimates are easy to construchéChernozhukov and
Hansen method. Leé¢ represent the residuals from the quantile regraessio
of Y = WY on X, and define 1(g|<h)/(2h), where h is a constant
bandwidth.
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0
. Define®, = fWY; and Z, = fX,. Then the covariance matrix for
g=(p.p)is:

V(@) =3(1) S(n)I() (11)

where

f f m] O
10 {cbwv q:x} and  S(7) :r(l—r)[WYWY WY x}
ZWY Z'X X WY XX

As is the case for any instrumental variables @sfimator, the estimates
from either approach can be sensitive to the choigestruments. However, an
important advantage of the IV approach over maxintikalihood estimation,
which is commonly used for the non-quantile versibthe spatial AR model, is
that that there is no need to invert the nxn mattix 0W) *when estimating
the model.

It may still prove necessary to invert large masiavhen constructing
predicted values folY. Let Y(7)denote the set of predicted values of the
dependent variable for quantie

Three procedures are often used to const?lﬁcb:
guantile version of the structural model

Y (7) = DT)WY + XB(7) (12)

guantile version of the reduced form

Y(7) = (1 = POW) ™ XB(r) (13)
guantile version of a decomposition into “trendtasignal” components
Y(7) = XB(r) + POW(I = D(T)W) ™ XB(T) (14)

Though the first procedure may be viewed as chgdigcause it uses
actual values oMWY to predicty, it is commonly used for standard linear
simultaneous equations models.

The second version follows directly from the orgimodel specification:
the equation impliesY = (I — oW)™(XB+u), from which equation (13)
follows by settingu = 0. Finally, equation (14) is derived by notitgt equation
(13) also provides a way to estim&® for the expression given in equation (12):

WY(r) =W(I - A(W)XA() (15)
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5 Conditionally Parametric Quantile Regression

Nonparametric approaches can be adapted to quasgilession models.
In the case of a single explanatory variable, kihelt is necessary to make the
model nonparametric is to add a kernel weight fionctK((x-x)/h) when
estimating a quantile regression for a target paintAfter estimating the
function for a series of target points, the estesatan then be interpolated to all
values ofx. The nonparametric approach is a flexible way to aldinearity to
the estimated quantile regressions. Although nampatric approaches can
potentially be applied to variables with many exg@li@ry variables, the variance
of the estimated can become very high when thexrevaire than two or three
explanatory variables.

The problem can be simplified significantly in ttese of spatial data sets.
It is usually reasonable to assume that a simptati model fits the data well in
small geographic areas. The difficulty is in spgai§ a global parametric model
that fits the data well across a large region. $patial AR model allows for
local variation around a global parametric tremd.cbntrast, a conditionally
parametric approach allows for flexible trends lipvaing the coefficients to
vary smoothly over space. Nonparametric models marhard to summarize
because they produce separate estimates for ebseyvation. As we have seen,
this is not a problem for quantile regression mededcause the easiest way to
interpret the results is to present sets of dens#ymates showing how the
distribution of the dependent variable changes hes walues of individual
explanatory variable change. As a result, it ist jas easy to estimate
nonparametric quantile regressions as it is tcaugeear approach.

5.1 CPAR Quantile Regression for Spatial Data

Consider the conditional quantile functio®, (r|X) = XB(r|X), in
which the dependent variable is a linear functidnaoset of explanatory
variables,X. Now suppose that we want to allow the coeffigetat vary over
space. Usingp andla to represent the geographic coordinates, we cae the
conditional quantile function as:

Q,(7]X,lo,la) = XB(r|X ,lo,la) (16)

Although it is possible to includie® andla as explanatory variables — in
which case they are part of thematrix — the more common approach is to keep
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them separate. Also, note thatandla can represent any geographic coordinate
system rather than just longitude and latitude.

All that is necessary to estimate a nonparamegision of equation (16)
is to specify a kernel weight function that indestthe weight given an
observation with coordinatel(la) when estimate the function at a target point
(lo, la;). One approach is to use a simple product kernel:

K((lo-1o,)/h,(la-la,)/h,) (17)

A more commonly used alternative is to make theghtsi depend simply
on the straight-line distance between each observahd the target poind;:

K (d, /) 8[L

The kernel weight function in equation (19) drawsiecle around the
target point to form the weights. Although, equatid is slightly more general,
there is little difference between the two in pieet With J different quantiles,
the set of estimated coefficients for explanatayiablek, 5, , is an nxJ matrix.
With K explanatory variables in addition to theertept, thenxJ matrix of
guantile predictions is

V=8,+>.% B 0j2

These predictions can be used to calculate defsittions for predicted
values of the dependent variable for arbitrary ealwf the explanatory
variables. Suppose we want to evaluate the modegl=ad. Then thenxJ set of
predicted values is simply

~ K 1A
V=B + %+ XL, - (21)
k=2

The calculations can be repeated for other valde8 and for other
explanatory variables. The results can then be sammed using estimated
kernel density functions.

Model is analogous to conditionally parametric (EGBAlocal linear
regression. The estimation procedure involves estng separate quantile
regressions for various target points, with moréghteplaced on observations
that are close to the target. Unlike a fully noapeetric approach, the CPAR



276 Grayna Trzpiot

approach produces coefficient estimates for théaegpory variables. But unlike
the spatial AR version of quantile regression, élséimated coefficients vary
over space. The CPAR approach is less sensitimeottel misspecification than
the fully parametric spatial AR approach, and @amts for local variation in an
overall spatial trend. The approach is well suifed quantile analysis in
situations where the distribution of the dependemtable is, for example,
highly skewed in some locations, tightly clusteredthers, while all the time
varying smoothly over space. Moreover, the CPARraggh does not require
the specification of a large ¢nn) spatial weight matrix, making it amenable to
large data sets.

We present results (Chambers, Pratesi, Salvatyidiza2005) obtained
for the estimation spatial distribution of the meamd median production of
olives per farm LES. The data are from Farm Stmec®Burvey (2003)Z the
incidence matrix of dimensions 2508 farm per 42 £§E¥he neighborhood
structureW is defined as follows: spatial weighy;, is 1 if area shares an edge
with j and O otherwise.

The median map is intensive to the presence a fg\falms that raise the
medium level of production as a consequence théasgidistribution of the
median is more homogenous.

Figure1a) Mean b) median production of dlives

p 4 ¥ . A
[ Joo4-1.97 . [_Jo-o78
[ ]187-426 [ 0.76- 1.54
[ 426-8.98 I 154-254
B 898 -17.23 I 254-453
N 17.23-4447 I 453-7.37

Source: Chambers R. & all (2005).
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6. Conclusions

In summary we can say that the classic paper fantije regression is
Koenker and Bassett (1978). Koenker (2005) presamgsxtensive examination
of the econometric theory related to a wide variefy quantile models.
Buschinsky (1998) helped popularize the use of tilearegression analysis on
the distribution of wages. The spatial AR versidnhe quantile model relies on
approaches developed by Chernozhukov and Hanse®6)(2ind Kim and
Muller (2004). The approaches have been appliestudies of house prices by
Kostov (2009), Liao and Wang (2012) and Zeitz ef(2008). The studies rely
on the IV approach for estimating the spatial ARIgloNonparametric versions
of quantile models relies heavily on Koenker wdklines are also a potential
alternative to kernel smoothing; it was done in K and Mizera (2004). The
use of nonparametric methods for spatial models Iteesn forced by the
invention of new terms by geographers for proceslihat have already been
used extensively in statistics and economics.
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Streszczenie

PRZESTRZENNA REGRESJIA KWANTYLOWA

W wielu zastosowaniach, podstawowym problememojgisti analiza wptywu
wektora skorelowanych zmiennych dbjajgcych X na zmienna objaiang Y.
W przypadku, gdy obserwacje badanych zmiennychdadatkowo rozmieszczone
przestrzennie, zadanie jest jeszcze trudniejszeieywa mamy dodatkowe zaleosci,
wynikagce ze zmienoi przestrzennej.

W tej pracy, w miejsce przestrzennej regresji wzgstujcej srednig,
rozpatrzymy przestrzenna regresjkwantylowy. Regresja kwantylowa zostanie
omoOwiona w przestrzennym kontek. Glownym celem pracy jest wskazanie na
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mcliwosci  powigzania metodologii regresji  kwantylowej i ekonometnego
modelowania przestrzennego. Dodatkowe zasoby iafijira zmienngci otrzymujemy
badapc kwantyle, wychodz poza tradycyjny opis klasycznej regresji. Estyjmac
kwantylowa w modelu przestrzennym uwydatniazmafei przestrzenne dla tdych
fragmentéw rozwzanych rozkladow.



