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Abstract 

In a number of applications, a crucial problem consists in describing and 
analyzing the influence of a vector Xi of covariates on some real-valued 
response variable Yi. In the present context, where the observations are made 
over a collection of sites, this study is more difficult, due to the complexity of the 
possible spatial dependence among the various sites. In this paper, instead of 
spatial mean regression, we thus consider the spatial quantile regression 
functions. Quantile regression has been considered in a spatial context. The 
main aim of this paper is to incorporate quantile regression and spatial 
econometric modeling. Substantial variation exists across quantiles, suggesting 
that ordinary regression is insufficient on its own. Quantile estimates of 
a spatial-lag model show considerable spatial dependence in the different parts 
of the distribution. 

1. Introduction

1.1 Linear Regression - introduction 

Linear regression is the standard tool for many empirical studies. When 
the relationship between a dependent variable, y, and a set of explanatory 
variables, X, can be written as uXy += β , a simple ordinary least squares
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(OLS) regression of y on X can provide unbiased estimates of the parameters, β, 
and a predicted value, β̂ˆ Xy = .  

This heavy reliance on linear regression models has been carried over to 
the analysis of spatial data. The most commonly used spatial model adds  
a weighted average of nearby values for the dependent variable to the list of 
explanatory variables:  

uXWYy ++= βρ .                                        (1) 

In this model, W is a “spatial weight” matrix that specifies the 
relationships between observations. W is a “spatial weight matrix” with rows 
that sum to one and zeros on the diagonals, and ρ is a parameter measuring the 
strength of the relationship. 

The model can be useful when X does not fully account for the tendency 
for the dependent variable to be highly correlated over space, so that nearby 
values of Y provide significant explanatory power. The endogeneity of WY 
poses challenges for estimation. Most empirical applications are based on 
maximum likelihood estimation of the model under the assumption of normally 
distributed errors. Other approaches are based on instrumental variables (IV) 
estimation, usually with spatially lagged values of X (such as WX and WWX) as 
instruments for WY. Several researchers have used the spatial AR model as the 
basis for quantile regressions in which both ρ and β are allowed to vary across 
quantiles. 

Typical specifications of the spatial weight matrix are based on first-order 
contiguity when the data are drawn from geographic units such as counties or 
census tracts. Though the approach is used less commonly for point data, typical 
specifications are similar in that the spatial weights are assumed to decline 
rapidly with distance between observations.  

Predicted values are then based on 

(1) the structural model 

βρτ ˆˆ)(ˆ XWYY +=  
(2) the reduced form  

βρτ ˆ)ˆ()(ˆ 1 XWIY −−=    
(3) or a decomposition into “trend” and“signal” components 

βρρβτ ˆ)ˆ(ˆˆ)(ˆ 1 XWIWXY −−+=  
Spatial effects generally appear as noise around a spatial trend that looks 

much like the predicted values from an OLS regression of Y on X. The objective 
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of a regression analysis is to estimate the coefficients, ρ and β, and to obtain 
predictions of y at given values of X.  

Regression analysis is not well suited to explaining the distribution of  
a variable. When the predicted values from a regression are β̂ˆ Xy = , then the 
distribution of the predicted values simply mimics the distribution of the 
variables in X. The implied effect of a change in one of the explanatory 
variables is to cause a parallel shift of ŷ  by an amount determined by the 
variable’s estimated coefficient. Though a parallel shift may be reasonable in 
some cases, it is limitation that a research may not want to impose beforehand. 

1.2. Quantile Regression  

Quantile regression is a method for estimating functional relations 
between variables for all portions of probability distribution. Typically  
a response variable Y is some function of predictor variable X. Regression 
application focus in estimating rates of changes in the mean of the response 
variable distribution as some function of a set of predictor variables. In the other 
words the function is defined for the expected value of Y conditional X, E(Y|X). 
Regression analysis gave incomplete picture of the relationships between 
variables especially for regression models with heterogeneous variances. 

Quantile regression was developed as an extension of the linear model for 
estimating rate of change in all parts of the distribution of response variables. 
The estimates are semi parametric in the sense that no parametric distributional 
form (eg. normal, Poisson, negative binominal, etc.) is assumed for the random 
error part of the model ε, although a parametric form is assumed for the 
deterministic portion of the model (eg. β0X0 + β1X1). The conditional quantiles 
denoted by Qy(τ|X) are the inverse of the conditional cumulative distribution 
function of the response variable )X(F 1

y τ− , where τ ∈[0, 1] denotes quantile 
rank. 

The quantile model posits the τth quantile of Y conditional on x to be,  

)(x)()x(Q τβ+τα=τ , 0 < τ < 1.                              (2) 

If β(τ) is a constant β, the model reduces to the standard conditional 
expectation model, E(Yx) = α +xβ, with constant variance errors. When β(τ) 
depends on τ, the model allows the distribution of Y to depend on x in different 
ways at different parts of the distribution. The traditional linear model can be 
viewed as a summary of all the quantile effects; that is,∫ = )()( xYEdxQ ττ . 
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Under this interpretation, traditional analysis loses information due to its 
aggregation of possibly disparate quantile effects. Many different quantile paths, 
for example, can lead to βk = 0. On the one hand, βk = 0 can mean xk does not 
matter – does not affect the distribution of Y. But it can also mean there are 
important but compensating quantile effects relating Y and x.  

Quantile regression is much better suited to analyzing questions involving 
changes in the distribution of a dependent variable. Quantile regressions allow 
for separate effects of an explanatory variable on different points of the 
dependent variable distribution. The coefficient estimates are then frequently 
interpreted as being analogous to standard linear regression estimates, albeit for 
different points in the distribution of the dependent variable (Trzpiot 2008, 2009 
a, b, c, 2010, 2011 a, b). 

It is less commonly recognized that quantile regression can produce 
estimates of changes in the full distribution of the dependent variable when the 
values of the explanatory variables change. The set of coefficients produced for 
independent variables imply a change in the full distribution dependent 
variables.  

Special issues do not necessarily arise when estimating quantile 
regressions using spatial data. Several researchers have proposed variants of the 
spatial autoregressive (AR) model, uXWYy ++= βρ , for quantile analysis.  

These procedures treat WY as just another endogenous explanatory 
variable. The spatial AR model may not necessarily be the best choice for spatial 
modeling, particularly for large data sets comprising individual geographic 
points rather than large zones or tracts. In situations where the distribution of the 
dependent variable changes smoothly over space, a nonparametric procedure 
may be a much better approach. 

2. Distribution of the Dependent Variable  

In general, the conditional quantile function for y given a set of variables 
X can be written:  

)()( XXXQy τβτ = ,   0 < τ < 1.                                  (3) 

Usually, we have limited our attention to a small number of values for the 
quantile, τ. Focusing on that values provides useful information about the 
distribution of the dependent variable given values of X, but it certainly does not 
provide a complete picture of the full distribution of y.  
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One way to use quantile regression estimates to simulate the distribution 
of the dependent variable is to draw randomly from possible values of and then 
estimate a separate quantile regression for each value of τ. For example, we 
might draw 1000 values of τ from a uniform distribution ranging from 0 to 1, 
i.e., τ ~ U(0, 1). If we let J represent the number of draws from the U(0,1) 
distribution, then we have:  

)(ˆ)(ˆ XXXQ jjy τβτ =   j = 1,…, J                             (4) 

With J estimates of the conditional quantile in hand, a standard kernel 
density function can be applied to )(ˆ XX jτβ  to estimate the density function 
for the dependent variable. Since quantile estimates are generally fairly smooth 
across, drawing multiple values of τ  from a U(0,1) distribution is a very 
inefficient way of constructing the density function. Using a limited range of 
value for τ is more efficient. For example, we might restrict the estimates to τ, , 
or a still more limited set of values for that provides good coverage of the set of 
permissible values for τ. Since quantile estimates are likely to have very high 
variances at extreme values of τ such as 0,01 or 0,99, it generally is a good idea 
to trim the extreme observations if a grid of values is used for τ. 

3. The Effect of a Discrete Change in an Explanatory Variable 

Quantile regression estimates can have interesting implications for the 
distribution of y values even in a model with a single explanatory variable. 
Consider a model with k explanatory variable in addition to the intercept. After 
estimating quantile regressions for J quantiles, the predicted values for quantile 
are simply τj: 

kjkjjjy xxXQ )(ˆ....)(ˆ)(ˆ)(ˆ
110 τβτβτβτ +++= ,  j = 1,…,J          (5) 

When simplified the notation by replacing )( Xjτβ  with )( jτβ , but it 
should be clear that the estimates depend on the observed values of X. Even in 
the single-explanatory case where k = 1, the implied effect of changing from to 
produces J separate values for  

kjkjjjy xxXQ )(ˆ....)(ˆ)(ˆ),(ˆ
01001 τβδτβτβδτ +++== ,  j = 1,…,J         (6) 



270                                                                 Grażyna Trzpiot                                                            

 

kjkjjjy xxXQ )(ˆ....)(ˆ)(ˆ),(ˆ
11001 τβδτβτβδτ +++== ,  j = 1,…,J          (7) 

With J quantiles and n observations, equation (6) and (7) imply nJ values 
for the conditional quantile functions. Since )(1̂ jτβ is not constant, the 
conditional quantile functions imply a full distribution of values for y even when 
x1 is the only variable in the model. 

4. Quantile version of the Spatial AR Model  

The analysis up to this point has not been explicitly spatial. Although the 
explanatory variables might include measures of access to various amenities 
such as a city’s central business districts, parks, or lakes, nothing yet is unique to 
the analysis of spatial data. Several attempts have been made to adapt the 
standard spatial autoregressive (AR) model for quantile regression.  

The spatial AR model adds a weighted average of nearby values of the 
dependent variable to the list of explanatory variables. The model is written 

uXWYy ++= βρ , where X is the nxk matrix of explanatory variables, Y is 
the dependent variable, and W is an nxn matrix specifying the spatial 
relationship between each value of Y and its neighbors.  

Suppose the observations represent census tracts. If each tract is 
contiguous to four other tracts, then Wij = ¼ for each of the four tracts that is 
contiguous to observation i, and Wij = 0 for all other values of j. In this example, 
each of the n elements of WY is simply the average, for each observation, of the 
four neighboring values of Y. More generally, if observation i is contiguous to 
other tracts, then Wij = 1/ni for the tracts that are contiguous to observation i, and 
Wij = 0 otherwise. For point data, WY might form a weighted average of the 
nearest K neighbors, or the weights might decline with distance. WY is clearly 
an endogenous variable. Indeed, one interpretation of WY is that it is the set of 
predicted values from kernel regressions of Y on the set of geographic 
coordinates. For example, suppose we were to write iiii ulalofy += ),( . If we 
use a rectangular kernel with a very small window size e.g., the four closest 
observations – then the cross-validation version of the kernel regression 
estimator is  

∑
=

=
n

j
jj

i
i yI

n
y

1

1
ˆ ,                                              (8) 
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where jI  indicates that observation j is one of the nearest neighbors to 
observation i, and indicates the number of observations that are being given 
weight when constructing the estimate for observation i. Not surprising, adding 
the predicted value of Y as an explanatory variable for Y often produces highly 
significant results.  

Although the spatial lag variable, WY, is formally equivalent to a kernel 
regression, the approaches could hardly be more different in spirit. 

The spatial AR model is based on an assumption that the researcher can 
truly specify the full spatial relationship between all of the observations. After 
specifying the entire path by which each of n observations can influence all of 
the other observations, all that is left is to determine the strength of the 
relationship by estimating ρ. 

In contrast, nonparametric and semi-parametric regressions involve far 
less difficult. We could easily write the model in semiparametric form as 

iiiii uXlalofy ++= β),(                                        (9) 

or in the conditionally parametric form  

iiiii ulaloXy += ),(β .                                          (10) 

The spatial AR model is based on the assumption that the researcher can 
specify a simple parametric function that accounts for both the relationship 
between X and Y and the entire spatial relationship between all observations. 
Nonparametric approaches are based on an assumption that the researcher can 
correctly specify the variables that influence Y, but they allow for local variation 
in the marginal effect of X on Y. The spatial AR model and its variants may be 
useful in situations where the objective is to estimate a causal relationship 
between Y and neighboring values of the dependent variable.  

4.1 Quantile Regression with an Endogenous Explanatory Variable 

The spatial AR model is most commonly estimated by maximizing the 
log-likelihood function that is implied under the assumption of normally 
distributed errors. An alternative approach based on the generalized method of 
moments method allows the model to be estimated using a variant of two-stage 
least squares (2SLS). In the first stage, the endogenous variable, WY, is 
regressed on a set of instruments.  
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The predicted value of WY is then used as an explanatory variable in the 
second stage regression. Most researchers use X, WX, and, sometimes, 
additional orders of the spatial lags such as WWX as instruments for WY.  

Though this method can work well when the goal is to estimate a standard 
regression, quantile regression may be more complex because instrumental 
variables are needed for WY when estimating a regression for each quantile, τ.  

Two methods have been used to form the instrumental variables needed 
these quantile regressions. The simpler version was proposed by Kim and Muller 
(2004). Their approach is a straightforward extension of 2SLS. 

For each value of τ, they first estimate a quantile regression for WY using 
the set of instruments (e.g., X and WX) as explanatory variables. The predicted 
values from the quantile regression are )(τ

∧
WY . In the second stage, they 

estimate another quantile regression for the same value of τ, this time with Y as 
the dependent variable and X and )(τ

∧
WY as the explanatory variables. 

Only 10 quantile regressions are needed to estimate the model for 5 
quantiles (e.g., τ = 0,10, 0,25, 0,50, 0,75, 0,90). Zietz et al. (2008) and Liao and 
Wang (2012) use this approach to estimate quantile versions of the spatial AR 
model. They use bootstrap procedures to construct standard error estimates.  

Though somewhat more complicated, the Chernozhukov and Hansen 
(2006) approach may be more robust than the Kim and Muller (2004) approach 
because it does not require that the same quantile be used in both stages of the 
procedure.  

An additional advantage is that Chernozhukov and Hansen present  
a covariance matrix estimate that is easy to construct.  

In the version describe here, the predicted values, 
∧

WY , from an OLS 
regression of WY on the instruments are used as the instrumental variable for 
WY. This instrumental variable is then used as an explanatory variable for  
a series of quantile regressions WYY ρ−  of on X and 

∧
WY  The same quantile, 

τ, is used for each of the regressions, while a grid of alternative values is used 
for ρ. The estimated value of ρ is the value that produces the coefficient on 

∧
WY  

that is closest to zero. After findingρ̂  the estimated values of β are calculated 
by a quantile regression of WYY ρ̂− on X. The motivation behind this 
estimator is a property of two-stage least squares: when instruments are chosen 
optimally, the coefficient on 

∧
WYwill be zero when both the actual variable, 

WY, and the instrumental variable are included in a regression. 

Standard error estimates are easy to construct for the Chernozhukov and 
Hansen method. Let e represent the residuals from the quantile regression 
of WYY ρ̂− on X, and define )2/()( hheI i < , where h is a constant 
bandwidth. 
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Define iii WYf
∧

=Φ  and iii XfZ = . Then the covariance matrix for 
)ˆ,ˆ(ˆ βρθ = is:  

′= −− 11 )()()()ˆ( τττθ JSJV                                           (11) 

where  










′′
Φ′Φ′

=
XZWYZ

XWY
J )(τ  and 















′′
′′−=

∧∧

XXWYX

XYWWYYWS )1()( τττ   

As is the case for any instrumental variables (IV) estimator, the estimates 
from either approach can be sensitive to the choice of instruments. However, an 
important advantage of the IV approach over maximum likelihood estimation, 
which is commonly used for the non-quantile version of the spatial AR model, is 
that that there is no need to invert the nxn matrix 1)( −− WI ρ when estimating 
the model.  

It may still prove necessary to invert large matrices when constructing 
predicted values for Y. Let )(ˆ τY denote the set of predicted values of the 
dependent variable for quantile τ.  

Three procedures are often used to construct )(ˆ τY :  

quantile version of the structural model 

)(ˆ)(ˆ)(ˆ τβτρτ XWYY +=                                     (12) 

quantile version of the reduced form 

)(ˆ))(ˆ()(ˆ 1 τβτρτ XWIY −−=                                   (13) 

quantile version of a decomposition into “trend” and“signal” components 

)(ˆ))(ˆ()(ˆ)(ˆ)(ˆ 1 τβτρτρτβτ XWIWXY −−+=                       (14) 

Though the first procedure may be viewed as cheating because it uses 
actual values of WY to predict Y, it is commonly used for standard linear 
simultaneous equations models.  

The second version follows directly from the original model specification: 
the equation implies )()( 1 uXWIY +−= − βρ , from which equation (13) 
follows by setting u = 0. Finally, equation (14) is derived by noting that equation 
(13) also provides a way to estimate WY for the expression given in equation (12): 

)(ˆ))(ˆ()( 1 τβτρτ XWIWWY −
∧

−=                     (15) 
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5 Conditionally Parametric Quantile Regression  

Nonparametric approaches can be adapted to quantile regression models. 
In the case of a single explanatory variable, x, all that is necessary to make the 
model nonparametric is to add a kernel weight function K((x-xt)/h) when 
estimating a quantile regression for a target point xt. After estimating the 
function for a series of target points, the estimates can then be interpolated to all 
values of x. The nonparametric approach is a flexible way to add nonlinearity to 
the estimated quantile regressions. Although nonparametric approaches can 
potentially be applied to variables with many explanatory variables, the variance 
of the estimated can become very high when there are more than two or three 
explanatory variables.  

The problem can be simplified significantly in the case of spatial data sets. 
It is usually reasonable to assume that a simple linear model fits the data well in 
small geographic areas. The difficulty is in specifying a global parametric model 
that fits the data well across a large region. The spatial AR model allows for 
local variation around a global parametric trend. In contrast, a conditionally 
parametric approach allows for flexible trends by allowing the coefficients to 
vary smoothly over space. Nonparametric models can be hard to summarize 
because they produce separate estimates for every observation. As we have seen, 
this is not a problem for quantile regression models because the easiest way to 
interpret the results is to present sets of density estimates showing how the 
distribution of the dependent variable changes as the values of individual 
explanatory variable change. As a result, it is just as easy to estimate 
nonparametric quantile regressions as it is to use a linear approach.  

5.1 CPAR Quantile Regression for Spatial Data  

Consider the conditional quantile function )()( XXXQy τβτ = , in 
which the dependent variable is a linear function of a set of explanatory 
variables, X. Now suppose that we want to allow the coefficients to vary over 
space. Using lo and la to represent the geographic coordinates, we can write the 
conditional quantile function as:  

),,(),,( laloXXlaloXQy τβτ =                            (16)  

Although it is possible to include lo and la as explanatory variables – in 
which case they are part of the X matrix – the more common approach is to keep 
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them separate. Also, note that lo and la can represent any geographic coordinate 
system rather than just longitude and latitude.  

All that is necessary to estimate a nonparametric version of equation (16) 
is to specify a kernel weight function that indicates the weight given an 
observation with coordinates (lo, la) when estimate the function at a target point 
(lot, lat). One approach is to use a simple product kernel:  

( ) ( )( )21 /,/ hlalahloloK tt −−                             (17) 

A more commonly used alternative is to make the weights depend simply 
on the straight-line distance between each observation and the target point, dt: 

)/( hdK t                                                  (18)  

The kernel weight function in equation (19) draws a circle around the 
target point to form the weights. Although, equation 18 is slightly more general, 
there is little difference between the two in practice. With J different quantiles, 
the set of estimated coefficients for explanatory variable k, kβ̂ , is an nxJ matrix. 
With K explanatory variables in addition to the intercept, the nxJ matrix of 
quantile predictions is  

∑
=

′+=
K

k
kkxy

1
0

ˆˆˆ ββ                                                  (20)  

These predictions can be used to calculate density functions for predicted 
values of the dependent variable for arbitrary values of the explanatory 
variables. Suppose we want to evaluate the model at x1 = δ. Then the nxJ set of 
predicted values is simply 

∑
=

′++=
K

k
kkxxy

2
10

ˆˆˆ βδβ .                                            (21) 

The calculations can be repeated for other values of δ and for other 
explanatory variables. The results can then be summarized using estimated 
kernel density functions.  

Model is analogous to conditionally parametric (CPAR) local linear 
regression. The estimation procedure involves estimating separate quantile 
regressions for various target points, with more weight placed on observations 
that are close to the target. Unlike a fully nonparametric approach, the CPAR 
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approach produces coefficient estimates for the explanatory variables. But unlike 
the spatial AR version of quantile regression, the estimated coefficients vary 
over space. The CPAR approach is less sensitive to model misspecification than 
the fully parametric spatial AR approach, and it accounts for local variation in an 
overall spatial trend. The approach is well suited for quantile analysis in 
situations where the distribution of the dependent variable is, for example, 
highly skewed in some locations, tightly clustered in others, while all the time 
varying smoothly over space. Moreover, the CPAR approach does not require 
the specification of a large (n x n) spatial weight matrix, making it amenable to 
large data sets. 

We present results (Chambers, Pratesi, Salvati, Tzavidis 2005) obtained 
for the estimation spatial distribution of the mean and median production of 
olives per farm LES. The data are from Farm Structure Survey (2003). Z the 
incidence matrix of dimensions 2508 farm per 42 LESs. The neighborhood 
structure W is defined as follows: spatial weight wij, is 1 if area shares an edge 
with j and 0 otherwise. 

The median map is intensive to the presence a few big farms that raise the 
medium level of production as a consequence the spatial distribution of the 
median is more homogenous.  

Figure 1 a) Mean b) median production of olives 

 
Source: Chambers R. & all (2005). 
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6. Conclusions 

In summary we can say that the classic paper for quantile regression is 
Koenker and Bassett (1978). Koenker (2005) presents an extensive examination 
of the econometric theory related to a wide variety of quantile models. 
Buschinsky (1998) helped popularize the use of quantile regression analysis on 
the distribution of wages. The spatial AR version of the quantile model relies on 
approaches developed by Chernozhukov and Hansen (2006) and Kim and 
Muller (2004). The approaches have been applied to studies of house prices by 
Kostov (2009), Liao and Wang (2012) and Zeitz et al. (2008). The studies rely 
on the IV approach for estimating the spatial AR model. Nonparametric versions 
of quantile models relies heavily on Koenker work. Splines are also a potential 
alternative to kernel smoothing; it was done in Koenker and Mizera (2004). The 
use of nonparametric methods for spatial models has been forced by the 
invention of new terms by geographers for procedures that have already been 
used extensively in statistics and economics.  
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Streszczenie 
 

PRZESTRZENNA REGRESJA KWANTYLOWA 
 

W wielu zastosowaniach, podstawowym problemem jest opis i analiza wpływu 
wektora skorelowanych zmiennych objaśniających X na zmienna objaśnianą Y.  
W przypadku, gdy obserwacje badanych zmiennych są dodatkowo rozmieszczone 
przestrzennie, zadanie jest jeszcze trudniejsze, ponieważ mamy dodatkowe zależności, 
wynikające ze zmienności przestrzennej.  

W tej pracy, w miejsce przestrzennej regresji wykorzystującej średnią, 
rozpatrzymy przestrzenna regresję kwantylową. Regresja kwantylowa zostanie 
omówiona w przestrzennym kontekście. Głównym celem pracy jest wskazanie na 



                                                           Spatial Quantile Regression                                                279 

 

możliwości powiązania metodologii regresji kwantylowej i ekonometrycznego 
modelowania przestrzennego. Dodatkowe zasoby informacji o zmienności otrzymujemy 
badając kwantyle, wychodząc poza tradycyjny opis klasycznej regresji. Estymacja 
kwantylowa w modelu przestrzennym uwydatnia zależności przestrzenne dla różnych 
fragmentów rozważanych rozkładów. 


