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Abstract 

The problem of prediction of subpopulation (domain) total is studied as in 
Rao (2003). Considerations are based on spatially correlated longitudinal data. 
The domain of interest can be defined after sample selection what implies its 
random sample size. The special case of the General Linear Mixed Model is 
proposed where two random components obey assumptions of spatial and 
temporal moving average process respectively. Moreover, it is assumed that the 
population may change in time and elements’ affiliations to subpopulation may 
change in time as well. The proposed model is a generalization of longitudinal 
models studied by e.g. Verbeke, Molenberghs (2000) and Hedeker, Gibbons 
(2006). The best linear unbiased predictor (BLUP) is derived. It may be used 
even if the sample size in the subpopulation of interest in the period of interest is 
zero. In the Monte Carlo simulation study the accuracy of the empirical version 
of the BLUP will be studied in the case of correct and incorrect specification of 
the spatial weight matrix. Two cases of model misspecification are studied. In 
the first case the misspecified spatial weight is used. In the second case 
independence of random components is assumed but the variable which is used 
to compute elements of spatial weight matrix in the correct case will be used as 
auxiliary variable in the model. 
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1. Introduction 

We start from some general description of the problem. In the paper 
considerations are based on the model approach in survey sampling. In the 
survey sampling the main purpose is the estimation or prediction 
of characteristics of the whole population e.g. the population mean 
or the population total (i.e. sum of values of the variable of interest). In the 
practice of survey sampling typically it is not the only purpose of the survey –
the estimation or prediction of subpopulation (domain) characteristics may be of 
interest of survey statistician as well. For example, from some population of 
people a sample is drawn. The key issue is to estimate the total amount of money 
spent for some type of goods in the whole population. Additional purpose of the 
survey is to estimate the total amount of money spent for the considered type of 
goods but not in the whole population but for inhabitants of some geographical 
region which (additionally) belong to the group of households consisting from  
3 persons. If the division of the population due to geographical regions and 
household size is not taken into account in the sampling plan, the subpopulation 
size in the sample will be random. It means that it may be very small or even 
zero. What is more, if the problem will be considered in the case of longitudinal 
survey, we should take into account that the population may change in time, 
population elements may change their subpopulation’s affiliation in time (that 
the household size, to which some person belongs to, may change in time) and 
that the temporal and spatial autocorrelation is observed. 

2. Basic notations 

Let us introduce some notation presented earlier by Żądło (2009). 
Longitudinal data for periods t=1,...,M are considered. In the period t the 
population of size tN  is denoted by tΩ . The population in the period t is 

divided into D disjoint subpopulations (domains) dtΩ  each of size dtN , where 
d=1,...,D. Let the set of population elements for which observations are available 
in the period t be denoted by st and its size by nt. The set of subpopulation 
elements for which observations are available in the period t is denoted by dts  

and its size by ndt. Let: rdt dt dtsΩ = Ω − , rdt dt dtN N n= − . 

Let idM  denotes the number of periods when the i-th population element 
belongs to the d-th domain. Let us denote the number of periods when the i-th 
population element (which belongs to the d-th domain) is observed by idm . Let 
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rid id idm M m= − . It is assumed that the population may change in time and that 
one population element may change its domain affiliation in time (from 
technical point of view observations of some population element which change 
its domain affiliation are treated as observations of new population element). 
It means that i and t completely identify domain affiliation but additional 
subscript d will be needed as well. More about this assumptions will be written 
at the end of the next section. 

The set of elements which belong at least in one of periods t=1,...,M to 
sets tΩ  is denoted by Ω  and its size by N. Similarly, sets dΩ , s , ds , rdΩ  of 

sizes dN , n, dn , rdN  respectively are defined as sets of elements which belong 

at least in one of periods t=1,...,M to sets dtΩ , ts , dts , rdtΩ  respectively. 

The d*-th domain of interest in the period of interest t* will be denoted by * *d tΩ , 
and the set of elements which belong at least in one of periods t=1,...,M to sets 

* *d tΩ  will be denoted by *dΩ .  

Values of the variable of interest are realizations of random variables idjY  

for the i-th population element which belongs to the d-th domain in the period 

ijt , where i=1,...,N, j=1,...,Mid, d=1,...,D. The vector of size 1idM ×  of random 

variables idjY  for the i-th population element which belongs to the d-th domain 

will be denoted by idjY =  idY , where 1,..., idj M= . Let us consider values of 

the variables of interest ' ' 'i d jY  for the i’ -th population element which belongs to 

the d’-th domain observed in periods ' 'i jt , where i’ =1,...,n, j’ =1,...,mi’d’ , 

d’=1,...,D. The vector of random variables ' ' 'i d jY  (where i’ =1,...,n, j’ =1,...,mi’d’ , 

d’=1,...,D) of size ' ' 1i dm ×  will be denoted by ' ' ' ' 'i d jY =  s i dY , where 

j’ =1,...,mi’d’ . The vector of random variables '' '' ''i d jY  of size '' '' 1ri dm ×  for the i’’ -

th population element which belongs to the d’’ -th domain for observations 
which are not available in the sample is denoted by

 
'' '' '' '' ''i d jY =  r i dY , where 

j’’ =1,...,mri’’d’’ . 

The proposed approach may be used to predict the domain total for any 
(past, current and future) periods but under assumption that values of the 
auxiliary variables and the division of the population into subpopulations in the 
period of interest are known. 
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3. Superpopulation model 

We consider superpopulation models used for longitudinal data (compare 
Verbeke, Molenberghs, 2000; Hedeker, Gibbons, 2006) which are – what is 
important for further considerations – special cases of the General Linear Model 
(GLM) and the General Linear Mixed Model (GLMM). The following model is 
assumed: 

= + +d d d d d dY X β Z v e ,                               (1) 

where 

1
( )

di N
col

≤ ≤
=d idY Y , where idY  is a random vector of size 1idM × , 

1
( )

di N
col

≤ ≤
=d idX X , where idX  is known matrix of size idM p× , 

1
( )

di N
diag

≤ ≤
=d idZ Z , where idZ  is known vector of size 1idM × , 

1
( )

d
idi N

col v
≤ ≤

=dv , where idv  is a random component and dv  (d=1,2...,D) are 

assumed to be independent, 
1

( )
di N

col
≤ ≤

=d ide e , where ide  is a random 

component vector of size 1idM ×  and ide ( i=1,...,N; d=1,...,D) are assumed to be 

independent, dv  and de  are assumed to be independent. 

What is more, that vector of random components dv  obey assumptions of 
spatial moving average process, i.e. 

( )sp dλ= +d d dv W u u ,                                      (2) 

where dW  is the spatial weight matrix for profiles idY , 2~ ( , )uσ
d

d N
u 0 I . Hence, 

( )~ ,d dv 0 R ,                                             (3) 

where 2
uσ=d dR H

 
and 2

( ) ( )( )sp spλ λ= + + +
d

T T
d d d d dN

H I W W W W . Moreover, 

elements of ide  obey assumptions of MA(1) temporal process, i.e. 

( ) 1idj idj t idje ε λ ε −= − .                                 (4) 

Hence,  
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~ ( , )id ide 0 Γ ,                                             (5) 

where elements of 

2
( ) ( )

2
( ) ( ) ( )

2 2
( ) ( )

2
( )

1 0 ... 0

1 ... 0

0 1 ... 0

... ... ... ... ...

0 0 0 ... 1

t t

t t t

t t

t

ε

λ λ
λ λ λ

σ λ λ

λ

 + −
 − + − 
 = − +
 
 
 + 

idΓ  . 

Let 1 ( )d Dcol ≤ ≤= dY Y , 2 2
1( ) ( ( ))d DD diag Dξ ξ≤ ≤= = dV Y Y and 2 ( )Dξ=d dV Y . 

Hence, 

( )2
1 1 1

( ) ( )
d

T
d D d D u i N

diag diag diagσ≤ ≤ ≤ ≤ ≤ ≤
= = +d d d d idV V Z H Z Γ .              (6)  

Let 1 1 1
( ) ( ( ))

d
d D d D i N

col col col≤ ≤ ≤ ≤ ≤ ≤
= =s sd sidY Y Y , 

2 2
1( ) ( ( ))d DD diag Dξ ξ≤ ≤= =ss s sdV Y Y

, 
2 ( )Dξ=ss d sdV Y

 

Hence, 

( )2
1 1 1

( ) ( )
d

T
d D d D u i n

diag diag diagσ≤ ≤ ≤ ≤ ≤ ≤
= = +ss ss d sd d sd ss idV V Z H Z Γ ,     (7) 

where 

1
( )

di n
diag

≤ ≤
=sd sidZ Z , where sidZ  is known vector of size 1idm × , ss idΣ  is  

a submatrix obtained from idΣ  by deleting rows and columns for unsampled 
observations, 

What is more, 

       ( ) 1
1 1 2

1 1 1
( ) ( )

d

T
d D d D u i n

diag diag diagσ
−

− −
≤ ≤ ≤ ≤ ≤ ≤

 = = + 
 

ss ss d sd d sd ss idV V Z H Z Γ .     (8) 

Let 1 1 1
( ) ( ( ))

rd
d D d D i N

col col col≤ ≤ ≤ ≤ ≤ ≤
= =r rd ridY Y Y , 

2 2
1( ) ( ( ))d DD diag Dξ ξ≤ ≤= =rr r sdV Y Y , 2 ( )Dξ=rr d rdV Y , 

Hence, 
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( )2 2

1 1 1
( ( )) ( )

rd
d D d D u i N

diag D diag diagξ σ≤ ≤ ≤ ≤ ≤ ≤
= = +T

rr rr d rd d rd rr idV V Z H Z Γ   (9) 

where 
1

( )
rdi N

diag
≤ ≤

=rd ridZ Z , where ridZ  is known vector of size 1ridM × , 

rr idΓ  is a submatrix obtained from idΓ  by deleting rows and columns for 

sampled observations. Let 1( , ) ( ( , ))d DCov diag Covξ ξ≤ ≤= =sr s r sd rdV Y Y Y Y , 

( , )Covξ=sr d sd rdV Y Y . Hence, 

( )2
1 1 1

( ) ( )
rd

d D d D u i N
diag diag diagσ≤ ≤ ≤ ≤ ≤ ≤

= = +T
sr sr d sd d rd sr idV V Z H Z Γ

 
where sr idΓ is a submatrix obtained from idΓ  by deleting rows for 

unsampled observations and column for sampled observations. 

Similar model is considered by Żądło (2011) but instead of spatial and 
temporal MA models for vectors of random components considered in this paper 
(see assumptions (2) and (5)) he studied simultaneously spatial autoregressive 
(SAR) process and temporal AR(1) model. Model (1) (with assumptions (2) and 
(5)) similarly to the model proposed by Żądło (2011) may be used when the 
population changes in time and the domain affiliation of population elements 
changes in time. In this case observations of new element of the population 
or observations of the population element after the change of its domain 
affiliation form new profile idY . It means that observations of new population 
element will be temporally correlated and spatially correlated with other 
population elements within the subpopulation. If the population element changes 
its domain affiliation its new observations will be temporally correlated 
(but temporally uncorrelated with old observations) and spatially correlated with 
other population elements within new subpopulation (but spatially uncorrelated 
with elements of the previous subpopulation). 

In next sections three predictors of the total (of the sum of random 

variables) 
* *

* * * *

d t

d t id t
i

Yθ
∈Ω

= ∑  in the domain of interest in the period of interest will 

be proposed. 

4. First predictor – Spatial EBLUP 

In the section, based on the Royall (1976) theorem, we derive the formula 
of the best linear unbiased predictor (BLUP) of the population total under the 
model (1). Let us introduce following notations: 
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    ( ) 1

* * * * * * *
ˆ

d

−
= T -1 T -1

sd ss d sd sd ss d sdβ X V X X V Y                  (10) 

where 

*

2
* * * * *1

( )
d

T
u i n

diagσ
≤ ≤

= +ss d sd d sd ss idV Z H Z Γ ,                (11) 

*sdX  is known
*

*
1

dn

id
i

m p
=

×∑  matrix of auxiliary variables, *sdY  is a
*

*
1

1
dn

id
i

m
=

×∑  

vector of random variables idjY . 

The BLUP of the total in the domain of interest in the period of interest is 
given by: 

* *

(1) * *
ˆ ˆ

d t

id t
i s

Yθ
∈

= + +∑ rd*t* d*x β%   

( ) ( )
*

2 1
* * * * * * *1

ˆ( )
rd

u i N
diagσ −

≤ ≤
+ + −T T

rd* rd d sd rs id ss d sd sd d*γ Z H Z Γ V Y X β      (12) 

where 

rd*t*x% is a 1 p× vector of totals of auxiliary variables in * *rd tΩ , 

rd*γ  is a 
*

*
1

1
dn

rid
i

M
=

×∑  vector of one’s for observations in period *t (i.e. in * *rd tΩ ) 

and zero otherwise. 

If the unknown parameters 2uσ , 2
εσ , ( )spλ , ( )tλ  in (12) will be replaced by 

some estimators we obtain the empirical best linear unbiased predictor (EBLUP) 
which remains unbiased under some weak assumptions (see Żądło (2004)). 
Because the spatial correlation is included in the assumed model, the EBLUP 
may be called spatial EBLUP (SEBLUP).  

5. Second predictor – misspecified spatial weight matrix 

In the previous section the BLUP and its empirical version were derived 
under the model (1) assuming that the structure of the spatial weight matrix 

dW (where d=1,...,D) is correct. In this case the new predictor is derived under 
the model given by formula (1) but the assumed structure of the spatial weight 
matrix is not correct. The misspecified spatial weight matrix will be denoted by 
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( )misdW (where d=1,...,D). In this case we obtain some empirical predictor which 

is not EBLUP under (1) due to the misspecification of the spatial weight matrix 
– in the simulation study it will be denoted by SEBLUPmis. 

6. Third predictor – independent random components 

In this section we assume that population data obey assumptions of 
the model (1) but with ( ) 0spλ =  and ( ) 0tλ =  what means that random 

components are assumed to be uncorrelated. For this model (i.e. under 
assumption that ( ) 0spλ =  and ( ) 0tλ = ) BLUP is given by: 

( )
* *

2 1
(3) * * * * * * *
ˆ ˆ ˆ

d t

id t u
i s

Yθ σ −

∈

= + + −∑ T T
rd*t* d* rd* rd sd ss d sd sd d*x β γ Z Z V Y X β%          (13) 

where 

* *

* *
1 1

2 2
* * * n nd d

id id
i i

m m

T
u εσ σ

= =

×
= +

∑ ∑
ss d sd sdV Z Z I                             (14) 

where 
* *

* *
1 1

n nd d

id id
i i

m m
= =

×∑ ∑
I is identity matrix of size 

* *

* *
1 1

n nd d

id id
i i

m m
= =

×∑ ∑ , ˆ
d*β given by formula 

(10) where *ss dV  given by (11) is repl aced by (14). 

The predictor given by (13) is not BLUP under the model (1) due to 
the misspecification of the assumed model (because it is derived under 
assumption that ( ) 0spλ =  and ( ) 0tλ = ). In the simulation study the empirical 

version of the predictor (13) will be denoted by SEBLUPmis2. 

7. Monte Carlo simulation study 

The simulation study was conducted using R package (R Development 
Core Team (2012)). It is based on artificial longitudinal data from M=3 periods. 
The population size in each period equals N=200 elements which consists of 
D=20 domains (subpopulations) each of size 10 elements. The balanced panel 
sample is considered – in each period the same 40 elements are observed. The 
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sample sizes in D=20 domains are as follows {1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 
3, 3, 3, 3, 3, 3, 3}. Relatively small population size is due to very time-
consuming computations. Relatively large sample size (comparing to the 
population size) is assumed to increase accuracy of SEBLUP due to the 
existence of spatial effect. The number of iterations is 2000.  

In the simulation data are generated based on the model (1) assuming 
arbitrary chosen parameters 2 1uσ = , 2 1εσ = , 100d dβ β∀ = = , [1]

idM p×
=idX  and 

different values of ( )spλ  and ( )tλ . The spatial weight matrix is based not 

on geographical distances between profiles (in this case between elements) but 
based on the values of the auxiliary variable. In the simulation study the 
elements of spatial weight matrix (denoted by dW ) were row-standardized 
inverses of absolute differences between sorted values of auxiliary variable 
generated from Beta(1,5) distribution. The Beta(1,5) distribution is distribution 
with positive asymmetry as many economic variables what means that 
considered distance between elements may be treated as a distance in some 
economic sense. Values of the variable were sorted to obtain the biggest values 
of the spatial weight matrix close to the diagonal. For this type of assumed as 
correct spatial weight matrix, assumption of row-standardized neighborhood 
matrix (where one element has two neighbours – one before and one after) as 
a misspecified spatial weight matrix (denoted by ( )misdW ) is reasonable solution. 

In the simulation three predictors are considered: 

• The first predictor (denoted in the simulation by SEBLUP) is spatial EBLUP 
which is empirical version of (12), where parameters are estimated using 
restricted maximum likelihood method. The spatial weight matrix is given 
by dW (described above) and 

1
[1]

idM ×
=idZ . 

• The second predictor (denoted in the simulation by SEBLUPmis) 
is empirical version of (12) but where 

1
[1]

idM ×
=idZ  and dW  is replaced by 

row-standardized neighborhood matrix (denoted by ( )misdW ) and parameters 

are estimated using restricted maximum likelihood method based on 
misspecified likelihood function (where dW is replaced by ( )misdW ) 

• The third predictor (denoted in the simulation by SEBLUPmis2) is given by 
(13) where parameters are estimated using restricted maximum likelihood 
method based on misspecified likelihood function (assuming that ( ) 0spλ =  

and ( ) 0tλ =  and idZ  is a vector of auxiliary variable generated based on 

Beta(1,5) distribution which was used earlier (in the case of the first and the 
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second predictor) to compute distances and then elements of spatial weight 
matrix. 

In the simulation special cases of the predictors’ equations are used for 
balanced panel sample and under assumption that d dβ β∀ = . 

Because we are mainly interested in the spatial effect, in 5 simulations we 
study different values of ( )spλ  ( ( ) {0,6; 0,7; 0,8; 0,9;1}spλ = ) and one value of 

( ) 0,5tλ = . To study maximum effect of both spatial and time effect in the last 

simulation it is assumed that ( ) ( ) 1sp tλ λ= = . Cases for ( ) {0,6; 0,7}spλ = are not 

presented at graphs. 

In the following graphs it is shown (on the right side) that the predictor 
SEBLUP may be more accurate comparing to BLUPind maximum for the 
considered cases from c.a. 9% to c.a. 17% for ( )spλ = 1 and ( ) 0,5tλ = .- see the 

right side of graph 3.   

Graph 1. Simulation results for ( )spλ = 0,8 and ( ) 0,5tλ =  
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Graph 2. Simulation results for ( )spλ = 0,9 and ( ) 0,5tλ =  
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Graph 3. Simulation results for ( )spλ = 1 and ( ) 0,5tλ =  
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Graph 4. Simulation results for ( )spλ = 1 and ( ) 1tλ =  
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The predictor SEBLUP may be more accurate comparing to SEBLUPmis 
maximum for the considered cases by c.a. 6% - see the left side of graph 3 and 
graph 4. What is very interesting, for all of the considered pairs of ( )spλ  and ( )tλ  
there are some cases when SEBLUPmis is better than SEBLUP. It results from 
the decrease of the accuracy of the first predictor due to the estimation of the 
model parameters (the decrease of the accuracy of spatial EBLUP comparing 
with spatial BLUP) – in some cases studied in the simulation study the 
maximum decrease was even greater than 5%.  

Summarizing, the proposed predictor (the first predictor - SEBLUP) 
which takes the spatial and temporal autocorrelation into account may be better 
than the predictor derived under assumption of the lack of spatial and temporal 
autocorrelation (the third predictor – SEBLUPmis2) in the studied cases from 
c.a. 1% to c.a. 17%. The misspecification of the spatial weight matrix has small 
influence on the accuracy – the maximum decrease of the accuracy observed in 
the simulation was c.a. 6% but in many cases the predictor under assumption of 
the misspecified spatial weight matrix is better than the correct predictor what 
results from the decrease of the accuracy of SEBLUP due to the estimation of 
model parameters. 
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8. Conclusions 

In the paper three predictors of the subpopulation total are proposed for 
longitudinal data and their accuracy is studied in the simulation study. It is 
shown that the considered misspecification of spatial weight matrix decreases 
the accuracy of the predictor only slightly. 
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Streszczenie 
 

O BŁĘDNEJ SPECYFIKACJI MACIERZY WAG PRZESTRZENNYCH  
W STATYSTYCE MAŁYCH OBSZARÓW W BADANIACH 

WIELOOKRESOWYCH 
 

Rozważany jest problem predykcji wartości globalnej w podpopulacji (domenie) 
podobnie jak w Rao (2003). Zaproponowano przypadek szczególny Ogólnego 
Mieszanego Modelu Liniowego, gdzie dwa składniki losowe spełniają założenia 
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odpowiednio przestrzennego i czasowego procesu średniej ruchomej. Proponowany 
model jest uogólnieniem modeli wielookresowych rozważanych przez Verbeke, 
Molenberghs (2000) oraz Hedeker, Gibbons (2006). Wyprowadzona zostanie postać 
najlepszego liniowego nieobciążonego predyktora wartości globalnej w domenie.  
W badaniu symulacyjnym dokładność empirycznej wersji najlepszego liniowego 
nieobciążonego predyktora była analizowana zarówno w przypadkach prawidłowej jak 
i nieprawidłowej specyfikacji macierzy wag.  


