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Abstract

The problem of prediction of subpopulation (domain) total is studied as in
Rao (2003). Considerations are based on spatially correlated longitudinal data.
The domain of interest can be defined after sample selection what implies its
random sample size. The special case of the General Linear Mixed Model is
proposed where two random components obey assumptions of spatial and
temporal moving average process respectively. Moreover, it is assumed that the
population may change in time and elements’ affiliations to subpopulation may
change in time as well. The proposed model is a generalization of longitudinal
models studied by e.g. Verbeke, Molenberghs (2000) and Hedeker, Gibbons
(2006). The best linear unbiased predictor (BLUP) is derived. It may be used
even if the sample size in the subpopulation of interest in the period of interest is
zero. In the Monte Carlo simulation study the accuracy of the empirical version
of the BLUP will be studied in the case of correct and incorrect specification of
the spatial weight matrix. Two cases of model misspecification are studied. In
the first case the misspecified spatial weight is used. In the second case
independence of random components is assumed but the variable which is used
to compute elements of spatial weight matrix in the correct case will be used as
auxiliary variable in the model.

*Ph.D., University of Economics in Katowice
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1. Introduction

We start from some general description of the mmablin the paper
considerations are based on the model approachirireys sampling. In the
survey sampling the main purpose is the estimation prediction
of characteristics of the whole population e.g. tip@pulation mean
or the population total (i.e. sum of values of treiable of interest). In the
practice of survey sampling typically it is not tbely purpose of the survey —
the estimation or prediction of subpopulation (dothaharacteristics may be of
interest of survey statistician as well. For examgtom some population of
people a sample is drawn. The key issue is to atithe total amount of money
spent for some type of goods in the whole poputathdditional purpose of the
survey is to estimate the total amount of moneynsfm the considered type of
goods but not in the whole population but for inteaits of some geographical
region which (additionally) belong to the grouplafuseholds consisting from
3 persons. If the division of the population duegengraphical regions and
household size is not taken into account in thepfiamplan, the subpopulation
size in the sample will be random. It means thahaty be very small or even
zero. What is more, if the problem will be consetkm the case of longitudinal
survey, we should take into account that the paulamay change in time,
population elements may change their subpopulaiaffiliation in time (that
the household size, to which some person belong®dg change in time) and
that the temporal and spatial autocorrelation seoled.

2. Basic notations

Let us introduce some notation presented earlierZbgtto (2009).
Longitudinal data for period$=1,...M are considered. In the periad the

population of sizeN, is denoted byQ,. The population in the periodis

divided intoD disjoint subpopulations (domain§), each of sizeN,, where

d=1,...D. Let the set of population elements for which obatons are available
in the periodt be denoted bys and its size byy. The set of subpopulation

elements for which observations are available enghriodt is denoted bys,,
and its size byg. Let: Q y, =Qg4 =Sy Nyg = Ny — Ny, -
Let M,, denotes the number of periods whenitkie population element

belongs to thal-th domain. Let us denote the number of periodsrmthei-th
population element (which belongs to th¢h domain) is observed by, . Let
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my = M, — m, . It is assumed that the population may changére and that

one population element may change its domain aifiih in time (from
technical point of view observations of some popaitaelement which change
its domain affiliation are treated as observatiohsiew population element).
It means thati and t completely identify domain affiliation but additial
subscriptd will be needed as well. More about this assumptieitisbe written
at the end of the next section.

The set of elements which belong at least in onpesiodst=1,...M to
setsQ, is denoted byQ and its size b\. Similarly, setsQ,, s, s,, Q, of

sizesN,, n, n;, N,, respectively are defined as sets of elements whetbng
at least inone of periods1,..M to setsQ,, s, S,, Q, respectively.
Thed*-th domain of interest in the period of intereswill be denoted byQ... ,

and the set of elements which belong at least eafmperiod€=1,...M to sets
Q,.. will be denoted byQ,. .

Values of the variable of interest are realizatiohsandom variable¥;;
for thei-th population element which belongs to théh domain in the period
t; wherei=1,...N, j=1,...Mj4, d=1,...D. The vector of sizeM,, x1 of random
variablesY,; for thei-th population element which belongs to théh domain
will be denoted byY,, :[Yidj ] where j = 1,..M,, . Let us consider values of
the variables of interest.,.;. for thei’-th population element which belongs to
the d’-th domain observed in periods.j., where i'=1,...n, j=1,...Myg,
d’'=1,...D. The vector of random variablé$d,j, (wherei'=1,..n, | =1,...Mg,
d'=1,..p) of size m, x1 willbe denoted by Y., =[Y; |, where
’=1,...mq . The vector of random variablés,,.,. of sizem,.,. x1 for thei” -

th population element which belongs to td&-th domain for observations
which are not available inthe sample is denotedYhy,. =[Yi..d JJ where

7 =1, Mg
The proposed approach may be used to predict thmidototal for any
(past, current and future) periods but under astiomphat values of the

auxiliary variables and the division of the popigdatinto subpopulations in the
period of interest are known.
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3. Superpopulation model

We consider superpopulation models used for lodgial data (compare
Verbeke, Molenberghs, 2000; Hedeker, Gibbons, 20@t6th are — what is
important for further considerations — special sasfethe General Linear Model
(GLM) and the General Linear Mixed Model (GLMM). & fiollowing model is
assumed:

Yd :XdBd +Zdvd +ed’ (1)
where

Yd=colJsiSNd (Yq), where Y, is a random vector of sizeM,, x1,

X4 =col

EiSNd(Xid), where X, is known matrix of size M, xp,

Z,=diag__, (Z,), where Z, is known vector of size M, x1,
vy =col__, (W), wherey, is a random component ang, (d=1,2...p) are
assumed to be independemuzcoIEiSNd(qd), where e, is a random

component vector of siz®,, x1 ande, (i=1,...N; d=1,...D) are assumed to be
independenty, ande, are assumed to be independent.

What is more, that vector of random componentsobey assumptions of
spatial moving average process, i.e.

Vd:/]( W, +uy , (2)

sp)

where W, is the spatial weight matrix for profileg, , u, ~ (O,ajlN ). Hence,

Vy ~(0- Rd)v )

where R, =o;H, and H, =l +A W, +W )+ W W [ . Moreover,

elements ok, obey assumptions of MA(1) temporal process, i.e.

€4 = i _/](t)‘gidj p 4)

Hence,
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e, ~ (0T ), ()
1+, <A, O 0 |

Ay 1Ay Ay 0

where elements of , =0?| 0 Ay 1+AG 0
0 o o B A2
Let Y =colyp(Yy), V= D? (Y) =diag.4p ( D;(Yd ))andV, = D? (Ya)-
Hence,
V =diag.p(Vy) = diag.q.p (USZ HZq+ diag (rid)) : (6)

LetYs =co <dsD(st) = COledsD(CoLisNd (Y sid)) ’

Vss = Dgg (Ys) = diag]sdsD(Dgg(Y sd)) Vssd = Dgg (st)

Hence,

Vss = diagJSdSDNSS() = diag.lsdsD(aﬁz s'E' % Tsd+ diagsiSnd (r ssil)’ (7)

where

Z,=diag__ (Z4), where Zg, is known vector of sizem, x1, X

S

ss i

a submatrix obtained fronk,, by deleting rows and columns for unsampled

observations,

What is more,

Vi = diago. (V39 = diagsdsD((afz H 77t diag, (X z)) (8)

Let Y, =coly (V)= COIJsdsD(CO!Sist Mia )

Vrr = Dgg (Yr ) = diag]sdsD(D{Z(st )) ’ Vrrd = Dgg (Yrd ) ’

Hence,
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V, = diag]sdsD(sz (Vira ) = diag.,.p (Ufzrd H,Z4 + diagsis,\,rd (5 )) 9

where Z :diagEiSNrd (Z,4), where Z, is known vector of sizeM,, x1,
I',, is a submatrix obtained fronk’, by deleting rows and columns for
sampled observations. LetV, =Cov,(Y,,Y, )= diag.,, ( Coy(Y .Y 4)),
Vg =CoV (Yy,Y ). Hence,

Vsr = diag{lsdsD Nsrd) = diagsdsD (Ulzlz soH dZ :—d + diagsist (Fsr id))
where I',, ,is a submatrix obtained fronT',, by deleting rows for

unsampled observations and column for sampled wdi$ens.

Similar model is considered [&¥adto (2011) but instead of spatial and
temporal MA models for vectors of random componeotssidered in this paper
(see assumptions (2) and (5)) he studied simultsstespatial autoregressive
(SAR) process and temporal AR(1) model. Model (i} assumptions (2) and
(5)) similarly to the model proposed iadio (2011) may be used when the
population changes in time and the domain afféiatof population elements
changes in time. In this case observations of nment of the population
or observations of the population element after thenge of its domain
affiliation form new profile Y,, . It means that observations of new population
element will be temporally correlated and spatiatlgrrelated with other
population elements within the subpopulation. & gopulation element changes
its domain affiliation its new observations will bemporally correlated
(but temporally uncorrelated with old observatioas)l spatially correlated with
other population elements within new subpopulafiout spatially uncorrelated
with elements of the previous subpopulation).

In next sections three predictors of the total o sum of random
variables)d,., = z Y4+ in the domain of interest in the period of inténedl
I0Q gep
be proposed.

4. First predictor — Spatial EBLUP

In the section, based on the Royall (1976) theokeenderive the formula
of the best linear unbiased predictor (BLUP) of fgupulation total under the
model (1). Let us introduce following notations:
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~ i -1 B
By =(XdeV saX su) X'V oY s (10)

ssd
where

Vssd‘ = 0'52 sdH dZ Tsti + dia‘g]_isnd* (r ss*id) ! (11)

<

Ng+ Ny+

X IS knownz Mg X P matrix of auxiliary variablesy, is az mg. X1
i=1 i=1

vector of random variable¥; .

The BLUP of the total in the domain of interestlie period of interest is
given by:

0(1) = Z Yiee + Xigee By

iCgee

+’Y|-'I;i* (Oﬁzrd *Hd*zs-lc—i* + diaglsisNrdk (rrs id* )) \/S;Jél (st -X sd Bd*) (12)
where
X 4 1S @ Ix pvector of totals of auxiliary variables @,,.,. ,

Ng+
Y 1S @Y M. x1 vector of one’s for observations in peribti(i.e. in Q.. )
i=1

and zero otherwise.
If the unknown parameters;, o7, A, A, in (12) will be replaced by

some estimators we obtain the empirical best linebiased predictor (EBLUP)
which remains unbiased under some weak assump(seeZadio (2004)).
Because the spatial correlation is included indesumed model, the EBLUP
may be called spatial EBLUP (SEBLUP).

5. Second predictor — misspecified spatial weight arix

In the previous section the BLUP and its empirigatision were derived
under the model (1) assuming that the structur¢hefspatial weight matrix

W, (whered=1,...D) is correct. In this case the new predictor isvéer under

the model given by formula (1) but the assumedcaire of the spatial weight
matrix is not correct. The misspecified spatial girtimatrix will be denoted by
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W, (mig (Whered=1,...D). In this case we obtain some empirical predietbich

is not EBLUP under (1) due to the misspecificatidrthe spatial weight matrix
— in the simulation study it will be denoted by SEB’mis.

6. Third predictor — independent random components

In this section we assume that population data cd®sumptions of
the model (1) but withA,, =0 and A, =0 what means that random

components are assumed to be uncorrelated. For nodel (i.e. under
assumption tha#l , =0 and A;, =0) BLUP is given by:

(sp)

Oy = D Yo * X be +0200 202000 (Ve X Be)  (13)

iD8gep
where

—_ 2 T 2
Vsscf _Juz sdz sd +Uel ng

e (14)
MgeX) " Mge

i=1 i=1

is identity matrix of sizendf Mg« % ME Mg s B « given by formula
gt d
2 md*XE ]* i=1 i=1

i=1 i=!

(10) whereV, given by (11) is repl aced by (14).

The predictor given by (13) is not BLUP under thedal (1) due to
the misspecification of the assumed model (becatises derived under

assumption that, =0 and A, =0). In the simulation study the empirical
version of the predictor (13) will be denoted byBRE/Pmis2.

7. Monte Carlo simulation study

The simulation study was conducted using R pacKk&y®evelopment
Core Team (2012)). It is based on artificial londinal data froniM=3 periods.
The population size in each period equds?200 elements which consists of
D=20 domains (subpopulations) each of size 10 elesndine balanced panel
sample is considered — in each period the samde#eats are observed. The
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sample sizes iD=20 domains are as follows {1, 1, 1,1, 1,1, 1222, 2, 2, 2,
3, 3, 3, 3, 3, 3, 3}. Relatively small populatioizes is due to very time-
consuming computations. Relatively large samplee sjgomparing to the
population size) is assumed to increase accuracsEBLUP due to the
existence of spatial effect. The number of iteragics 2000.

In the simulation data are generated based on tidein(1) assuming
arbitrary chosen parametess =1, o7 =1, 0,58, = £=100, X, =[1] , ., and

different values ofA, and A, .

on geographical distances between profiles (in ¢hise between elements) but
based on the values of the auxiliary variable. he simulation study the

elements of spatial weight matrix (denoted Wy,) were row-standardized

inverses of absolute differences between sortedesabf auxiliary variable
generated from Beta(1,5) distribution. The Betg(diStribution is distribution
with positive asymmetry as many economic variablelsat means that
considered distance between elements may be treate distance in some
economic sense. Values of the variable were saotedbtain the biggest values
of the spatial weight matrix close to the diagoradr this type of assumed as
correct spatial weight matrix, assumption of roarstardized neighborhood
matrix (where one element has two neighbours —lmiere and one after) as

a misspecified spatial weight matrix (denotedWy .. ) is reasonable solution.

The spatial weight matrix is based not

In the simulation three predictors are considered:

 The first predictor (denoted in the simulation lyBhUP) is spatial EBLUP
which is empirical version of (12), where parametare estimated using
restricted maximum likelihood method. The spatigight matrix is given

by W, (described above) and,, =[1] , -

e« The second predictor (denoted in the simulation ®EBLUPMIs)
is empirical version of (12) but whe,, =[1]  _ and W, is replaced by
row-standardized neighborhood matrix (denoted/My, .. ) and parameters
are estimated using restricted maximum likelihooéthnd based on
misspecified likelihood function (wher#/, is replaced byW, . )

* The third predictor (denoted in the simulation lBEUPmMIs2) is given by
(13) where parameters are estimated using restritiximum likelihood

method based on misspecified likelihood functioss(aning that4 ., =0

and A, =0 and Z,; is a vector of auxiliary variable generated basad
Beta(1,5) distribution which was used earlier (ie tase of the first and the
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second predictor) to compute distances and themegls of spatial weight
matrix.

In the simulation special cases of the predictergiations are used for
balanced panel sample and under assumptioriif)gt = 5.

Because we are mainly interested in the spatiatefin 5 simulations we
study different values oﬂ(sp) (/](Sp) ={0,6;0,7;0,8;0,9;1) and one value of
Ay =0,5. To study maximum effect of both spatial and tieffect in the last
simulation it is assumed thazl'(sp) :/1(0 =1. Cases forA ., ={0,6; 0, 7}are not
presented at graphs.

In the following graphs it is shown (on the rigltey that the predictor
SEBLUP may be more accurate comparing to BLUPin&kimmam for the
considered cases from c.a. 9% to c.a. 17%/fgy =1 and A, =0,5.- see the

right side of graph 3.

(sp)

Graph 1. Simulation results for A ;) =0.8and A, = 0,5
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Graph 2. Simulation results for A ;) =0,9and A, = 0,5
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Graph 3. Simulation results for A ;) =1and A, = 0,5
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Graph 4. Simulation results for A ;) =1and A, =1
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The predictor SEBLUP may be more accurate compadrigEBLUPmis
maximum for the considered cases by c.a. 6% -teeéeft side of graph 3 and
graph 4. What is very interesting, for all of trensidered pairs ofl;, and A,
there are some cases when SEBLUPmis is betterSE&bLUP. It results from
the decrease of the accuracy of the first predidter to the estimation of the
model parameters (the decrease of the accuracpatiak EBLUP comparing
with spatial BLUP) — in some cases studied in timukation study the
maximum decrease was even greater than 5%.

Summarizing, the proposed predictor (the first wted - SEBLUP)
which takes the spatial and temporal autocorredatito account may be better
than the predictor derived under assumption ofldbk of spatial and temporal
autocorrelation (the third predictor — SEBLUPmig2)the studied cases from
c.a. 1% to c.a. 17%. The misspecification of thatispweight matrix has small
influence on the accuracy — the maximum decreasleeochccuracy observed in
the simulation was c.a. 6% but in many cases tadigior under assumption of
the misspecified spatial weight matrix is bettearththe correct predictor what
results from the decrease of the accuracy of SEBHU# to the estimation of
model parameters.
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8. Conclusions

In the paper three predictors of the subpopulatutal are proposed for
longitudinal data and their accuracy is studiedthia simulation study. It is
shown that the considered misspecification of apatieight matrix decreases
the accuracy of the predictor only slightly.
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Streszczenie

O BLEDNEJ SPECYFIKACJI MACIERZY WAG PRZESTRZENNYCH
W STATYSTYCE MALYCH OBSZAROW W BADANIACH
WIELOOKRESOWYCH

Rozwaany jest problem predykcji wasioi globalnej w podpopulacji (domenie)
podobnie jak w Rao (2003). Zaproponowano przypadekzegélny Ogdélnego
Mieszanego Modelu Liniowego, gdzie dwa skladnilsobee spetniaj zataenia
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odpowiednio przestrzennego i czasowego procesdniej ruchomej. Proponowany
model jest uogodlnieniem modeli wielookresowych edanych przez Verbeke,
Molenberghs (2000) oraz Hedeker, Gibbons (2006)prdiyadzona zostanie posgta

najlepszego liniowego nieolkgbnego predyktora warfoi globalnej w domenie.

W badaniu symulacyjnym dokfaddo empirycznej wersji najlepszego liniowego
nieobcizzonego predyktora byta analizowana zaréwno w przipat prawidtowej jak

i nieprawidtowej specyfikacji macierzy wag.



