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Selected Challenges from Spatial Statistics for Spatial
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Abstract

Griffith and Paelinck (2011) present selected non-standard spatial
statistics and spatial econometrics topics that address issues associated with
spatial econometric methodology. This paper addresses the following challenges
posed by spatial autocorrelation alluded to and/or derived from the spatial
statistics topics of this book: the Gaussian random variable Jacobian term for
massive datasets; topological features of georeferenced data; eigenvector
spatial filtering-based georeferenced data generating mechanisms; and,
interpreting random effects.

1. Introduction

Geography experienced a quantitative revolution in the 1950s and 1960s
(Curry 1967). Work generated by this movement initially analyzed distances
from locations of privilege as well as attribute variables whose observations
were distinguished merely by a locational index. Especially statistical decisions
spawned by these analyses proved to display far more variability than indicated
by classical statistical distribution theory; this increased variability is attributable
to positive spatial autocorrelation (SA) latent in almost all georeferenced data.
Addressing these inadequacies, Cliff and'@i®69) and Besag (1974), among
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others, commenced a formal development of autossgre-based spatial
statistics that popularized model specificationsoaating for latent SA. This
line of work soon eclipsed the point pattern arialysork that, until then,
typified much of quantitative spatial analyses. Neghile, parallel spatial
econometric developments flourished after the dotion of Paelinck and
Klaassen's (1979) seminal book, followed by Anssli(i988) classic book.
Paelinck (2012) addresses this historical trajgctor

The purpose of this paper is to highlight selecteallenges posed by SA
alluded to and/or derived from the spatial statsstiterature and contextualized
in Griffith and Paelinck (2011). One challenge @si$rom the increasing size of
georeferenced datasets, some of which are masslag.tCalculating maximum
likelihood estimates (MLES) requires computing tteterminant of an n-by-n
spatial covariance matrix—the Jacobian of a transétion in calculus terms—
which becomes excessively numerically intensivevan infeasible for massive
georeferenced datasets. This paper outlines amaiitee MLE solution to
nonlinear regression, which is new, couched in @Risting spatial statistics
literature about approximating the Jacobian termsekond challenge stems
from topological considerations accompanying gemefced datasets. This
paper focuses on a mistake appearing in the editéeature, and describes
a modified version of the well-known matrix poweginalgorithm that
successfully computes the principal eigenfunctiana periodic matrix. A third
challenge concerns georeferenced data generatinghamsms involving
eigenvector spatial filtering, and further developantributions in Griffith
(2011a,b). A fourth challenge furnishes additiomaight into the meaning of
spatially structured random effects. Successfubgament of these challenges
poses a potential to improve both spatial statistand spatial econometric
work.

2. The spatial statistical Jacobian term for Gausain model specifications

In part because normal curve theory was the bestlaiged probability
model-based analysis of the time, most early dpst#istics assumed a bell-
shaped curve. Gaussian spatial autoregressive mspedelfications to describe
n georeferenced sample values include a Jacobiam tehich is: (1) the
determinant of an n-by-n matrix; (2) the normaliziconstant ensuring that the
probability density function integrates to 1; an@) a function of the SA
parameter(s). Computational difficulties introdudatb calculating MLEs of
model parameters by the logarithm of this determtifieas generated a body of
literature addressing its simplification and appmedion (Ord, 1975; Griffith,
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1992, 2004a; Barry and Pace, 1999; Smirnov and|fn£901, 2009; Pace and
LeSage, 2004; Zhang and Leithead, 2007; Walde,e2G08).

The likelihood function is equivalent to a multiiaie normal probability
density function with a sample of size 1 and nalales:

L = (Zn)—nlz |V |1/2 (62)—n/2e—(Y—pl)TV(Y—ul)/(Zcz) (1)
whereV'c? is the SA variance-covariance matrix that is acfiom of the
spatial autoregressive parameferin a single-parameter model specification,
Y is a normally distributed random variablé,is an n-by-1 vector of random
variable values]l is an n-by-1 vector of ones, T denotes the materspose
operation, andi and o? respectively are the constant mean and the variahc
Y. Whenp =0,V =1, the n-by-n identity matrix.

But all of the more recent literature overlooks tiseful simplicity of the
approximation developed by Griffith (1992, 2004®jith a special case for
regular square tessellations (Griffith, 2004). Thepeal of this latter
approximation is that it can be employed efficignind effectively with
a dataset whose size is in the millions or billierss massive dataset. For
a symmetric distribution of eigenvalues, such aat thor a regular square
tessellation, the Jacobian approximation given bifita (2004) reduces to

—ZH:LN(l—pXJ-)/n=203LN(8)—mLN(8+p)—coLN(8—p) 2

i=1

where X, is the |" eigenvalue of matri%/, and® and & are coefficients to be
calibrated. Whenp = 0, both2@ LN(6)-oLN(d+p)-@LN(6-p)=10

and —ZLN(l—pkj) = 0. Griffith (2004b) shows that the Jacobian term
i=1

associated with a regular square tessellation fayn@ complete rectangular

region also can be approximated by

=2 LN(L-p ;)M =LN(L+0,p* +0,p* +0y0p™) 3
i=1

where @, @, and g, are coefficients to be calibrated. Whegn= 0,
LN(1+ q2p2 +Q4p4 + Q2op20) =0.
MLEs for the three parameters of equation (1) are
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A=1'VY/(1'v1), (4)

%= (Y —p)" V(Y —uld)/n, (5)

and for a spatial simultaneous autoregressive (SA&;spatial error model in
the spatial econometrics literature) model spetifin, for which
V=(_-pW)"(l -pW), whereW is an n-by-n geographic weights matrix,
may be calculated by solving the differential ecprat

ALN(L)/ 9p = {Z(—?\j)/(l—p xj)}/n +
= (6)
(Y -D)"(WT+W —p2WTW)(Y -[i1)/(2n6?) =0
where); are the n eigenvalues of matk.

Equations (2) and (3) respectively resu{tﬁ (=2;)IL=p A, )]/n =

=
-2ap /(3% -p?), and

—(2g5p + 401493 + 2@120[319)/(1"' qZPZ + G14P4 + q20p20).

These two substitutions dramatically simplify edpmat6).

For a regular square tessellation forming a coraptettangular region
(i,e., a remotely sensed image whose data may heoriemt for an
environmental economics analysis), with P > 3, (B,>and PQ< 5,625,
numerical experiments yield the following large gdarresults:

o = 0.16361 — 0.00457(1/P + 1/Q) — 0.47594/(PQ)

& = 1.17583 — 0.33691[1/(P+1) + 1/(Q+1)] — 1.08316{(RQ+1)] , and
0 = 0.11735 + 0.10091(17P+ 1/Q") + 0.42844/(PQ)

q. = 0.07421 + 0.05730(17P + 1/G"%) — 0.66001/(PQ)

0o = 0.05221 + 0.52467(1/f+ 1/Q™) + 2.48015/(PQ) .

The computation of Table 1 results utlized thesemerical
generalizations for a massive 3,000-by-5,000 pixgéoreferenced dataset
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collected for the Florida EvergladesRelatively few computational resources
are needed to analyze n = 15,000,000 observatiaingsi case.

A challenge for spatial econometricians suggestgd tlis spatial
statistical work is the generalization of coeffiti® for equation (2) for massive
georeferenced datasets based upon the type ofilaregurface partitioning that
characterize administrative units. The popular eagessive response (AR; the
spatial error model in the spatial econometriesditure) model specification has
the following MLEs:

B=(X"X)'XT(I =pW)Y = (XTX)IXTY =p (XTX)TXTWY

52 =[(1 -p W)Y = XB]"[(I —p W)Y —XB }/n and

[Zn:(—xj)/(l—pkj):l/n+
=1

iy Tew T +w - p2w Tw)y -2y Tw T xpyi2ns2) = 0.

Because X'X)™" needs to be inverted only once, this model sptitin
involves relatively little increase in computatibnaatensity vis-a-vis the
constant mean case. Consequently, timing resufisasing in Table 1 remain
informative for the nonconstant mean case.

3. The topology of georeferenced data

SA and autoregression analyses frequently arteutae topological
structure of georeferenced data with a simple piriad n-by-n geographic
weights matrixC based upon connectivity/contiguity. The row anduom
labels of matrixC are the ordered locations in a geographic landsacajph this
ordering being the same for both the rows and tenans for the sake of
convenience. The common definitions of contiguiy $urface partitioning are
based upon analogies with chess moves: the rook we-zero length common
boundaries, and the queen when both zero (i.entgJoand non-zero length
common boundaries, determine contiguity. If a rowd @ column location are
contiguous, then the corresponding matrix celloded 1; otherwise, it is coded

2 A January 1, 2002, 28.5-meter resolution LANDSAEfhanced Thematic Mapper Plus
(ETM+) image.
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0. Consequently, matri€ is sparse and symmetric. Often the preceding ratri
W is a row-standardized version of this matix

Table 1. Spatial autocorrelation parameter estimatin

estimated eigenvalues coefficient equations
band equation (2) equation (3) equation (2) equation (3)
~ CPU ~ CPU ~ CPU ~ CPU
p time* p time* p time" p time*

0.9248 0.03 0.923
0.9072 0.01 0.909
0.8452 0.03 0.862

0.04 0.9249 0.03 0.9231 0.0
0.03 0.9073 0.01 0.9094 0.0
0.04 0.8454 0.03 0.8639 0.0
0.4060 0.03 0.399 0.03 0.4067 0.03 0.3991 0.0
0.4773 0.01 0.467 0.03 0.4776 0.03 0.4683 0.0
7 | 0.6299 0.01 0.6255 0.03 0.6302 0.03 0.6288 0.0

Notes:! measured in seconds.

G W|IN|F
T O T =TT

W w Rk, Wb P

Source: own calculations.

Consider the case where matrix is irreducible (i.e., it cannot be
permuted into disjoint block diagonal submatricéx)wers of matrixC can be
interpreted as follows (M&iewicz and Ratajczak 1996):

Matrix C* yields a count in celljcthat indicates the number of ways of

moving from row location i to column location j @ging exactly k

boundaries.

This combinatorial interpretation motivated the wafethe row sums of

a power sum of matrixC, standardized by the largest element in the riegult
n-by-1 vector, sa¥,, as an index of topological accessibility for awark or
surface partitioning. Relatively large values dentications that are better
connected (directly and indirectly) and more cdhtrdocated (i.e., more
accessible) within the topology represented bygttagh associated with matrix
C, whereas relatively small values denote topoldlyicperipheral locations
within the graph (frequently those positioned oa boarder of the associated
geographic landscape). The diameter of the graphtegart of matrixC (i.e.,
the maximum number of links to be crossed when ngp¥rom any of the
n nodes—areal units in the case of spatial anahgsigeached any of the other
nodes) is a common stopping exponent for the pewer. Paths between nodes
become redundant beyond the diameter, but do atémusome detail in terms
of topological structure. All entries in the sumiaatmatrix for this exponent
have non-zero entries.

Vector E, relates to the principal eigenvector of mat@x sayE,;, and
tends to converge upon it; Maewicz and Ratajczak (1996, p. 78) argue that
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computing vectoE; is the proper way to define topological accessyhbiMass
(1985) criticizes some of the earlier discussiongbpgraphers concerning this
accessibility index, challenging conjectures alibet relationship between the
principal eigenfunction and the row/column sumsneditrix C (Figure 1a).
Cvetkove and Rowlinson (1990) echo Maas’ discussion, buthaout
contributing to resolving the controversy. Mass BEwp the geographic
connectivity matrix for the 1929 Uganda road netw@ported by Gould (1967,
p. 67). But this graph is periodic (the well-knowatnix powering algorithm
oscillates between 2.64892 and 2.86332; Figure dij, hence Maas reports
incorrect eigenvalues, having obtained the soluf@nthe lower bound in the
oscillation (he reports only the first 10 of the difenvalues):

Table 1a. Maas’ and actual eigenvalues

eigenvalue | A, A, Ay Ay A Ag A, Ag | Ag | Ay

fromMaas | 2.652| 1.828| 1.61§ 1.44F 0.91AW7035| 0.6180 | 0.4419 0 0

actual 2.754 1.839 1.63p 1.414 1.000B718|0.6787 | 0.3523 O 0

Source: Mass C. (1985).

Figure 1. Accessibility index scatterplots
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Notes: Left (a): the principal eigenvectéy versus the number of neighbors. Left middle (jjectories of
the old and new algorithm estimates. Right midd)e the principal eigenvectdt; versus the sum of
the powers of matri through its diameter (open circle) and through @QORight (d): the principal
eigenvectoE; versus its estimate produced by the new algorithm.

Source:own calculations.

The problematic periodicity of the 1929 Uganda roativork graph can
be resolved by modifying the well-know matrix power algorithm to estimate
the first eigenfunction so that it includes anatem lag:

limit [17(C* +C*U1T(C** +C) ~ 4,
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This modification produces the proper convergenckshe principal
eigenvalue (Figure 1b) and its corresponding eigetor (Figure 1d).

A challenge for spatial econometricians here idatermine the value of
eigenvectolE; for empirical analyses. I§; a useful spatial analysis covariate?
Is the correspondence between the row/column sunmsatrix C sufficiently
close toE; that their vector is a useful spatial analysisac@te?

4. Georeferenced data generating mechanisms

Griffith and Paelinck (2011) present salient feasuiof georeferenced
data, including how variance inflation occurs thgbu and how correlation
coefficients are impacted by, SA. They incorporaigenvector spatial filters
(ESFs) into georeferenced data generating mechanifm., a selected
probability model that includes both random and &#nponents that combine
together to yield individual observations) in soofi¢heir demonstrations.

Eigenvector spatial filtering methodology employise t eigenvectors
extracted from a modified version of the geograptinnectivity matrixC,
namely (I =11 /n)C (I —11"/n)= MCM , whereM is the standard projection
matrix commonly encountered in multivariate staisst and cE; is its i
eigenvector. This matrix expression comes from rthenerator of the Moran
Coefficient (MC), whose matrix version for responsetorY adjusted only for
its constant mean is given by

MC = [n/A'CD)][YMCMY /(Y'MY)] .

Substituting the eigenvectors into this expressesults in a Rayleigh
guotient, with vectorcE; maximizing the expression. Accordingly, these
n eigenvectors can be interpreted as follows:

the first eigenvector, sayE,, is the set of real numbers that has the largest
MC achievable by any set for the geographic arrarege defined by the
spatial connectivity matrixC; the second eigenvector is the set of real
numbers that has the largest achievable MC by anthat is orthogonal
and uncorrelated withE;; and so on througgE,, the set of real numbers
that has the largest negative MC achievable bysatyhat is orthogonal
and uncorrelated with the preceding (n — 1) eigetors.

As such, these eigenvectors furnish n distinct petpern descriptions of
latent SA in geographically distributed variablescéuse they are mutually
orthogonal and uncorrelated. An ESF is constructesin some linear
combination of a subset of these eigenvectors, samdes as a spatial proxy
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variable capturing SA effects in a model specii@at This control variable
embeds stochastic spatial dependencies amongdodatiexed observations
into the parameters of a probability density/masgfion.

All but one of the matrtMCM normalized eigenvectors have means of
0 and variances of 1/n. In other words, all of tt#iand 2* moments match.
Consider the following linear combination of thesetors:

K K
WY (29-1)aE / /Zaf =WE,B, 7)
j=1 j=1

where scaling coefficient W is some positive reamber, binary 0-1
variable g is a Bernoulli RV, and & a positive coefficient for eigenvector j.
The termB describes the nature, whereas the scalar W desdtile degree (i.e.,
the relative amount of variance accounted for),Séf. The mean of linear
combination (7) is 0, whereas its variance ignyand the term (2q — 1) makes
no difference because each eigenveg@ unique to a multiplicative factor of —1.

The central limit theorem governs expression (Hictv implies that the
ESFs described by it are approximately normallyrithigted.

Lemma 1: K << n eigenvectors of mattdCM are independent and are
not necessarily identically distributed RVs. As Keg to
infinity, expression (7) converges on a normalristion.

PF: Because all of the K means are 0, and

K
Ij(mit ajz{n Zajz] — 0O(Bentkus et al., 1996; Chaidee and Tuntapthai, 2009

Simulation experiments furnish evidence corrobagathis lemma (Table
2); it can be tested for in practice with a norrgahntile plot. Therefore, an
individual observation of a georeferenced Gauss@rom variable may be
written as

Y. =Y +We,B, ®)

where the nY;” are iid Nu , ), and the B is an ESF.

Equation (8) comprises two normal components, ofewbich is
equivalent to a spatially structured random meapaoese (i.e., \&B creates
random deviations abouyt), and furnishes the data generating mechanism in
terms of the following parametric mixture distritmut:
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Y |SA~ N(p,c?%)

}:Y~MW&+WWW
SA ~ N(0,W?/n)

In other words, the distribution at each locatios conditional on VéxB,
and SA inflates variance while not affecting anrage mean response across a
map.

A Manly transformatioh modifies the geographic distribution of
population density across Poland (Figures 2a ajpcbadaed upon communes, so
that it approximates a bell-shaped curve (Figurg. Zthe ESF (a linear
combination of 22 of 591 candidate vectors) fois tgeographic distribution
closely conforms to be bell-shaped curve (Figuresidd 3b), and accounts for
roughly 27% of the geographic variation in the sfanrmed population density.
The random variable Y* approximates a normal distiion, deviating from
a bell-shaped curve with one heavy tail (Figuresabd 3c). The estimated
mixture distribution is

Y |SA~ N(0.932110.0391%)

Y ~N(0.932110.04598).
SA~N(0,0.02417) }: ( g )

The variance inflation factor is 1.38192; SA intugds an additional nearly 40%
geographic variability into the transformed popiaiatdensity.

Table 2. Comparisons of eigenvectors and of ESFolBnd surface partitionings

moment commune countie: viovodeship

n 2,46¢ 36¢ 16

meat 0 0 0

standard deviatic 0.0201: 0.0520¢ 0.2500(

skewness: mean 0.05806 0.09079 0.20614
standard deviation 0.20666 404 0.21966

excess kurtosis: mean 0.63105 0.1775p -1.1483

standard deviation 7B88 0.42391 0.33501

# eigenvectors with MC > 0.25 591 85 4

eigenvectors: % with Pr(normality) <0 0 18.82 0

simulated ESFs: with Pr(normality) < 0.0 0 16.62 0.62

Source: own calculations.

% The Manly transformation completes the family o«kBoox power transformations. Here the

empirically calibrated transformation is exp[-0.8&population/ared)®%.
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Figure 2. Normal quantile plots
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Source: own calculations.

One advantage of the ESF specification is thag¢iy accurately captures
spatial structure as reflected in map pattern (@mpigures 3a and 3b). Thus,
ESF supports simulation experiments for which Yhdae determined with
a pseudo-random number generator, and then addbd ©SF, resulting in the
spatial structure being held constant across stioulareplications—the
parametric mixture distribution specifies the geqdpic distribution of Y as
being conditional on this map pattern.

One challenge for spatial econometricians suggestedthis spatial
statistical conceptualization is the establishmehtESF properties vis-a-vis
spatial autoregression model specifications. Arnotketo fully develop the
mathematical statistical theory associated with€SF

Figure 3. The geographic distribution of populationdensity

Notes: scale from light gray to black is proportibto density. Left (a): population/area. Middlg.(BSF.
Right (c): Y*.

Source: own calculations.
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5. Explicating spatially structured random effects

Random effects model specifications address sampdes which
observations are selected in a highly structuretierathan random way.
Frequently random effects can be estimated in dnevo ways: employing
repeated measures in a frequentist context, ora@mmgl priors in a Bayesian
context. This first conceptualization directly Isvkandom effects to means of
time series for individual locations. Because tledom effects term is
a constant through time, its spatial structure lmacaptured by an ESF. In turn,
this ESF can be estimated with only one sliceragt{i.e., a map for a specified
point in time), as in the preceding section, rewggplthat an ESF model
specification is able to uncover at least part shiadom effects term without
repeated measures. Priors in a Bayesian analysisatlbw the estimation of
a random effects term with only one slice of time.

An average exists for each time series in a spawe-tataset. This
average ignores both spatial and serial correlaiothe space-time series.
A random effects model essentially works with thegerages, adjusting them in
accordance with the correlational structure latentheir parent space-time
series, as well as their simultaneous estimatidre Tandom effects model
specification achieves this by fitting a distrilmutiwith a few parameters (e.g.,
a mean and a variance for a bell-shaped curvdjerahan n individual means
(fixed effects) for the n locations. Consequendlyrelationship exists between
the time series means and the random effects.r@hdom effects specification
relates to a fixed effects specification that ides n indicator variables, each for
a separate district specific local intercept (avel intercept is arbitrarily set to
0 to eliminate perfect multicollinearity with théofal mean).

A challenge for spatial econometricians suggestgd tiis spatial
statistical analysis concerns a need to betterrstatel the number of degrees of
freedom associated with a random effects term. Werothallenge is to better
understand random effects terms in the presenceowaériates. Given that
estimation of the spatially structured part of ad@am effects term is possible
with a single map, a third challenge is to investiggwhether or not estimation of
the spatially unstructured component of a randdeces term can be simplified.

6. Implications and conclusions

Spatial statistics and spatial econometrics ardrkih spirits in terms of
empirical analysis methodologies. Problems andlehgés faced by one of
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these fields reveals parallel problems and chadlengiready faced, or to be
faced, by the other field. Griffith and PaelinckO{2) present a number of
contemporary non-standard sources and treatmentsucii problems and
challenges. This paper builds on their work, extegdand identifying other

problems and challenges. No doubt the future wibldpce new problems and
challenges, too. Paelinck (2012) points out thatiap econometrics seeks to
obtain a better understanding of the workings aftiap economies. Similarly,

spatial statistics seeks to obtain a better uraledgtg of the workings of

geographic landscapes, some of which constituteespaonomies. This paper
crystallizes the following challenges for spatiabeometricians suggested by
contemporary spatial statistical work: (1) formirgt efficient and effective

spatial autoregressive implementations for masgjeereferenced datasets;
(2) determining the utility of the principal eigezotor of a geographic weights
matrix for empirical analyses; (3) casting georeficed data generating
mechanisms in terms of parametric mixture modelliuing ESFs; and,

(4) improving our understanding of spatially sturetd and unstructured random
effects terms that may appear in spatial statisticanometric model

specifications. New insights about these issuesr dffe potential to improve

both spatial statistical and spatial econometrickwo
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Streszczenie

WYBRANE WYZWANIA STATYSTYKI PRZESTRZENNEJ DLA
EKONOMETRYKOW PRZESTRZENNYCH

Artykut prezentuje wybrane, niestandardowe stakystgrzestrzenne oraz
zagadnienia ekonometrii przestrzennej. Raame teoretyczne koncentgujsie na
wyzwaniach wynikgrych z autokorelacji przestrzennej, namijgc do pogé
Gaussowskiej zmiennej losowej, topologicznych ceemych georeferencyjnych,
wektoréw wiasnych, filtrbw przestrzennych, geomsieyjnych mechanizméw
generowania danych oraz interpretacji efektow logtw



