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Abstract 

Griffith and Paelinck (2011) present selected non-standard spatial 
statistics and spatial econometrics topics that address issues associated with 
spatial econometric methodology. This paper addresses the following challenges 
posed by spatial autocorrelation alluded to and/or derived from the spatial 
statistics topics of this book: the Gaussian random variable Jacobian term for 
massive datasets; topological features of georeferenced data; eigenvector 
spatial filtering-based georeferenced data generating mechanisms; and, 
interpreting random effects. 

1. Introduction

Geography experienced a quantitative revolution in the 1950s and 1960s 
(Curry 1967). Work generated by this movement initially analyzed distances 
from locations of privilege as well as attribute variables whose observations 
were distinguished merely by a locational index. Especially statistical decisions 
spawned by these analyses proved to display far more variability than indicated 
by classical statistical distribution theory; this increased variability is attributable 
to positive spatial autocorrelation (SA) latent in almost all georeferenced data. 
Addressing these inadequacies, Cliff and Ord1 (1969) and Besag (1974), among 
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1 Geographical Analysis celebrated the major contributions to science of this cluster of

research with a special issue in 2009. 
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others, commenced a formal development of autoregression-based spatial 
statistics that popularized model specifications accounting for latent SA. This 
line of work soon eclipsed the point pattern analysis work that, until then, 
typified much of quantitative spatial analyses. Meanwhile, parallel spatial 
econometric developments flourished after the introduction of Paelinck and 
Klaassen’s (1979) seminal book, followed by Anselin’s (1988) classic book. 
Paelinck (2012) addresses this historical trajectory. 

The purpose of this paper is to highlight selected challenges posed by SA 
alluded to and/or derived from the spatial statistics literature and contextualized 
in Griffith and Paelinck (2011). One challenge arises from the increasing size of 
georeferenced datasets, some of which are massive today. Calculating maximum 
likelihood estimates (MLEs) requires computing the determinant of an n-by-n 
spatial covariance matrix—the Jacobian of a transformation in calculus terms—
which becomes excessively numerically intensive or even infeasible for massive 
georeferenced datasets. This paper outlines an alternative MLE solution to 
nonlinear regression, which is new, couched in the existing spatial statistics 
literature about approximating the Jacobian term. A second challenge stems 
from topological considerations accompanying georeferenced datasets. This 
paper focuses on a mistake appearing in the earlier literature, and describes  
a modified version of the well-known matrix powering algorithm that 
successfully computes the principal eigenfunction for a periodic matrix. A third 
challenge concerns georeferenced data generating mechanisms involving 
eigenvector spatial filtering, and further develops contributions in Griffith 
(2011a,b). A fourth challenge furnishes additional insight into the meaning of 
spatially structured random effects. Successful engagement of these challenges 
poses a potential to improve both spatial statistical and spatial econometric 
work. 

2. The spatial statistical Jacobian term for Gaussian model specifications  

In part because normal curve theory was the best developed probability 
model-based analysis of the time, most early spatial statistics assumed a bell-
shaped curve. Gaussian spatial autoregressive model specifications to describe  
n georeferenced sample values include a Jacobian term, which is: (1) the 
determinant of an n-by-n matrix; (2) the normalizing constant ensuring that the 
probability density function integrates to 1; and, (3) a function of the SA 
parameter(s). Computational difficulties introduced into calculating MLEs of 
model parameters by the logarithm of this determinant has generated a body of 
literature addressing its simplification and approximation (Ord, 1975; Griffith, 
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1992, 2004a; Barry and Pace, 1999; Smirnov and Anselin, 2001, 2009; Pace and 
LeSage, 2004; Zhang and Leithead, 2007; Walde et al., 2008). 

The likelihood function is equivalent to a multivariate normal probability 
density function with a sample of size 1 and n variables: 
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where V-1 2σ  is the SA variance-covariance matrix that is a function of the 
spatial autoregressive parameter ρ  in a single-parameter model specification,  
Y is a normally distributed random variable, Y is an n-by-1 vector of random 
variable values, 1 is an n-by-1 vector of ones, T denotes the matrix transpose 
operation, and µ  and 2σ  respectively are the constant mean and the variance of 
Y. When ρ  = 0, V = I , the n-by-n identity matrix. 

But all of the more recent literature overlooks the useful simplicity of the 
approximation developed by Griffith (1992, 2004a), with a special case for 
regular square tessellations (Griffith, 2004). The appeal of this latter 
approximation is that it can be employed efficiently and effectively with  
a dataset whose size is in the millions or billions—a massive dataset. For  
a symmetric distribution of eigenvalues, such as that for a regular square 
tessellation, the Jacobian approximation given by Griffith (2004) reduces to 
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where jλ  is the jth eigenvalue of matrix V, and ω  and δ  are coefficients to be 
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associated with a regular square tessellation forming a complete rectangular 
region also can be approximated by 
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MLEs for the three parameters of equation (1) are 
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 µ̂ =1TVY /(1TV1),                                                           (4) 

2σ̂ = )/nµ()µ( T 1YV1Y −− ,                                               (5) 

and for a spatial simultaneous autoregressive (SAR; the spatial error model in 
the spatial econometrics literature) model specification, for which  
V = ) ρ() ρ( T WIWI −− , where W is an n-by-n geographic weights matrix, ρ  
may be calculated by solving the differential equation 
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where jλ  are the n eigenvalues of matrix W.  
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These two substitutions dramatically simplify equation (6). 

For a regular square tessellation forming a complete rectangular region 
(i.e., a remotely sensed image whose data may be important for an 
environmental economics analysis), with P > 3, Q > 3, and PQ ≤  5,625, 
numerical experiments yield the following large sample results: 

≈  ω  0.16361 – 0.00457(1/P + 1/Q) – 0.47594/(PQ) 

≈  δ  1.17583 – 0.33691[1/(P+1) + 1/(Q+1)] – 1.08316/[(P+1)(Q+1)] , and 

q2 ≈  0.11735 + 0.10091(1/P5/4 + 1/Q5/4) + 0.42844/(PQ) 

q4 ≈  0.07421 + 0.05730(1/P2/3 + 1/Q2/3) – 0.66001/(PQ) 

q20 ≈  0.05221 + 0.52467(1/P7/4 + 1/Q7/4) + 2.48015/(PQ) . 

The computation of Table 1 results utilized these numerical 
generalizations for a massive 3,000-by-5,000 pixels georeferenced dataset 
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collected for the Florida Everglades2. Relatively few computational resources 
are needed to analyze n = 15,000,000 observations in this case. 

A challenge for spatial econometricians suggested by this spatial 
statistical work is the generalization of coefficients for equation (2) for massive 
georeferenced datasets based upon the type of irregular surface partitioning that 
characterize administrative units. The popular autoregressive response (AR; the 
spatial error model in the spatial econometrics literature) model specification has 
the following MLEs: 
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Because (XTX)-1 needs to be inverted only once, this model specification 
involves relatively little increase in computational intensity vis-à-vis the 
constant mean case. Consequently, timing results appearing in Table 1 remain 
informative for the nonconstant mean case. 

3. The topology of georeferenced data 

SA and autoregression analyses frequently articulate the topological 
structure of georeferenced data with a simple binary 0-1 n-by-n geographic 
weights matrix C based upon connectivity/contiguity. The row and column 
labels of matrix C are the ordered locations in a geographic landscape, with this 
ordering being the same for both the rows and the columns for the sake of 
convenience. The common definitions of contiguity for surface partitioning are 
based upon analogies with chess moves: the rook when non-zero length common 
boundaries, and the queen when both zero (i.e., points) and non-zero length 
common boundaries, determine contiguity. If a row and a column location are 
contiguous, then the corresponding matrix cell is coded 1; otherwise, it is coded 

                                                 
2 A January 1, 2002, 28.5-meter resolution LANDSAT 7 Enhanced Thematic Mapper Plus 

(ETM+) image. 
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0. Consequently, matrix C is sparse and symmetric. Often the preceding matrix 
W is a row-standardized version of this matrix C. 

Table 1. Spatial autocorrelation parameter estimation 

band 

estimated eigenvalues coefficient equations 

equation (2) equation (3) equation (2) equation (3) 

ρ̂  
CPU 
time1 ρ̂  

CPU 
time1 ρ̂  

CPU 
time1 ρ̂  

CPU 
time1 

1 0.9248 0.03 0.9236 0.04 0.9249 0.03 0.9231 0.01 

2 0.9072 0.01 0.9097 0.03 0.9073 0.01 0.9094 0.04 

3 0.8452 0.03 0.8621 0.04 0.8454 0.03 0.8639 0.03 

4 0.4060 0.03 0.3990 0.03 0.4067 0.03 0.3991 0.01 

5 0.4773 0.01 0.4672 0.03 0.4776 0.03 0.4683 0.03 

7 0.6299 0.01 0.6255 0.03 0.6302 0.03 0.6288 0.03 

Notes: 1 measured in seconds. 

Source: own calculations. 

Consider the case where matrix C is irreducible (i.e., it cannot be 
permuted into disjoint block diagonal submatrices). Powers of matrix C can be 
interpreted as follows (Maćkiewicz and Ratajczak 1996): 

Matrix Ck yields a count in cell cij that indicates the number of ways of 
moving from row location i to column location j crossing exactly k 
boundaries. 

This combinatorial interpretation motivated the use of the row sums of  
a power sum of matrix C, standardized by the largest element in the resulting  
n-by-1 vector, say EA, as an index of topological accessibility for a network or 
surface partitioning. Relatively large values denote locations that are better 
connected (directly and indirectly) and more centrally located (i.e., more 
accessible) within the topology represented by the graph associated with matrix 
C, whereas relatively small values denote topologically peripheral locations 
within the graph (frequently those positioned on the boarder of the associated 
geographic landscape). The diameter of the graph counterpart of matrix C (i.e., 
the maximum number of links to be crossed when moving from any of the  
n nodes—areal units in the case of spatial analysis—to reached any of the other 
nodes) is a common stopping exponent for the power sum. Paths between nodes 
become redundant beyond the diameter, but do account for some detail in terms 
of topological structure. All entries in the summation matrix for this exponent 
have non-zero entries.  

Vector EA relates to the principal eigenvector of matrix C, say E1, and 
tends to converge upon it; Maćkiewicz and Ratajczak (1996, p. 78) argue that 
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computing vector E1 is the proper way to define topological accessibility. Mass 
(1985) criticizes some of the earlier discussion by geographers concerning this 
accessibility index, challenging conjectures about the relationship between the 
principal eigenfunction and the row/column sums of matrix C (Figure 1a). 
Cvetković and Rowlinson (1990) echo Maas’ discussion, but without 
contributing to resolving the controversy. Mass employs the geographic 
connectivity matrix for the 1929 Uganda road network reported by Gould (1967, 
p. 67). But this graph is periodic (the well-know matrix powering algorithm 
oscillates between 2.64892 and 2.86332; Figure 1b), and hence Maas reports 
incorrect eigenvalues, having obtained the solution for the lower bound in the 
oscillation (he reports only the first 10 of the 18 eigenvalues): 

Table 1a. Maas’ and actual eigenvalues 

eigenvalue 1λ  2λ  3λ  4λ  5λ  6λ  7λ  8λ  9λ  10λ  

from Maas 2.652 1.828 1.618 1.447 0.9170 0.7035 0.6180 0.4419 0 0 

actual 2.754 1.839 1.639 1.414 1.0000 0.8718 0.6787 0.3525 0 0 

Source: Mass C. (1985). 

Figure 1. Accessibility index scatterplots 

    
Notes: Left (a): the principal eigenvector E1 versus the number of neighbors. Left middle (b): trajectories of 

the old and new algorithm estimates. Right middle (c): the principal eigenvector E1 versus the sum of 

the powers of matrix C through its diameter (open circle) and through 200 (*). Right (d): the principal 

eigenvector E1 versus its estimate produced by the new algorithm. 

Source:own calculations. 

The problematic periodicity of the 1929 Uganda road network graph can 
be resolved by modifying the well-know matrix powering algorithm to estimate 
the first eigenfunction so that it includes an iteration lag: 

. λ])(/)([ limit 1
k1-kT1kkT

k
→++ +
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This modification produces the proper convergences of the principal 
eigenvalue (Figure 1b) and its corresponding eigenvector (Figure 1d). 

A challenge for spatial econometricians here is to determine the value of 
eigenvector E1 for empirical analyses. Is E1 a useful spatial analysis covariate? 
Is the correspondence between the row/column sums of matrix C sufficiently 
close to E1 that their vector is a useful spatial analysis covariate?  

4. Georeferenced data generating mechanisms 

Griffith and Paelinck (2011) present salient features of georeferenced 
data, including how variance inflation occurs through, and how correlation 
coefficients are impacted by, SA. They incorporate eigenvector spatial filters 
(ESFs) into georeferenced data generating mechanisms (i.e., a selected 
probability model that includes both random and SA components that combine 
together to yield individual observations) in some of their demonstrations. 

Eigenvector spatial filtering methodology employs the eigenvectors 
extracted from a modified version of the geographic connectivity matrix C, 
namely /n)(  /n)( TT 11IC11I −− = MCM , where M  is the standard projection 
matrix commonly encountered in multivariate statistics, and CEj is its jth 
eigenvector. This matrix expression comes from the numerator of the Moran 
Coefficient (MC), whose matrix version for response vector Y adjusted only for 
its constant mean is given by 

MC = [n/(1TC1)][YTMCMY /(YTMY )] . 

Substituting the eigenvectors into this expression results in a Rayleigh 
quotient, with vector CE1 maximizing the expression. Accordingly, these  
n eigenvectors can be interpreted as follows: 

the first eigenvector, say CE1, is the set of real numbers that has the largest 
MC achievable by any set for the geographic arrangement defined by the 
spatial connectivity matrix C; the second eigenvector is the set of real 
numbers that has the largest achievable MC by any set that is orthogonal 
and uncorrelated with CE1; and so on through CEn, the set of real numbers 
that has the largest negative MC achievable by any set that is orthogonal 
and uncorrelated with the preceding (n – 1) eigenvectors. 

As such, these eigenvectors furnish n distinct map pattern descriptions of 
latent SA in geographically distributed variables because they are mutually 
orthogonal and uncorrelated. An ESF is constructed from some linear 
combination of a subset of these eigenvectors, and serves as a spatial proxy 
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variable capturing SA effects in a model specification. This control variable 
embeds stochastic spatial dependencies among location-indexed observations 
into the parameters of a probability density/mass function. 

All but one of the matrix MCM  normalized eigenvectors have means of 
0 and variances of 1/n. In other words, all of their 1st and 2nd moments match. 
Consider the following linear combination of these vectors: 

BEE K

K

1j
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1j

2
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where scaling coefficient W is some positive real number, binary 0-1 
variable q is a Bernoulli RV, and aj is a positive coefficient for eigenvector j. 
The term B describes the nature, whereas the scalar W describes the degree (i.e., 
the relative amount of variance accounted for), of SA. The mean of linear 
combination (7) is 0, whereas its variance is W2/n, and the term (2q – 1) makes 
no difference because each eigenvector Ej is unique to a multiplicative factor of –1.  

The central limit theorem governs expression (7), which implies that the 
ESFs described by it are approximately normally distributed. 

Lemma 1:   K << n eigenvectors of matrix MCM  are independent and are 
not necessarily identically distributed RVs. As K goes to 
infinity, expression (7) converges on a normal distribution. 

PF:    Because all of the K means are 0, and 
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(Bentkus et al., 1996; Chaidee and Tuntapthai, 2009). 

Simulation experiments furnish evidence corroborating this lemma (Table 
2); it can be tested for in practice with a normal quantile plot. Therefore, an 
individual observation of a georeferenced Gaussian random variable may be 
written as 

Y i = BeiK
*
i WY + ,                                                   (8) 

where the n *
iY  are iid N(µ  , 2σ ), and the WeiKB is an ESF. 

Equation (8) comprises two normal components, one of which is 
equivalent to a spatially structured random mean response (i.e., WeiKB creates 
random deviations about µ ), and furnishes the data generating mechanism in 
terms of the following parametric mixture distribution: 
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In other words, the distribution at each location i is conditional on WeiKB, 
and SA inflates variance while not affecting an average mean response across a 
map. 

A Manly transformation3 modifies the geographic distribution of 
population density across Poland (Figures 2a and 3a), based upon communes, so 
that it approximates a bell-shaped curve (Figure 2b). The ESF (a linear 
combination of 22 of 591 candidate vectors) for this geographic distribution 
closely conforms to be bell-shaped curve (Figures 2c and 3b), and accounts for 
roughly 27% of the geographic variation in the transformed population density. 
The random variable Y* approximates a normal distribution, deviating from  
a bell-shaped curve with one heavy tail (Figures 2d and 3c). The estimated 
mixture distribution is 

. )0.04598 0.93211, N(~Y
)0.02417 N(0,~SA

)0.03911 0.93211, N(~SA|Y 2
2

2

⇒


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The variance inflation factor is 1.38192; SA introduces an additional nearly 40% 
geographic variability into the transformed population density. 

Table 2. Comparisons of eigenvectors and of ESFs: Poland surface partitionings 

moments communes counties viovodeships 

n 2,468 369 16 

mean 0 0 0 

standard deviation 0.02013 0.05206 0.25000 

skewness: mean 0.05806 0.09079 0.20614 

                  standard deviation    0.20666 0.14942 0.21966 

excess kurtosis: mean 0.63105 0.17750 -1.14832 

                          standard deviation    1.07388 0.42391 0.33501 

# eigenvectors with MC > 0.25 591 85 4 

eigenvectors: % with Pr(normality) < 0.01 0 18.82 0 

simulated ESFs: % with Pr(normality) < 0.01 0 16.62 0.62 

Source: own calculations. 

                                                 
3 The Manly transformation completes the family of Box-Cox power transformations. Here the 

empirically calibrated transformation is exp[-0.3319/(population/area)0.7800]. 
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Figure 2. Normal quantile plots 

    
Notes: Left (a): population/area Middle left (b): transformed population density. Middle right (c): ESF. Right 

(d): Y*. 

Source: own calculations. 

One advantage of the ESF specification is that it very accurately captures 
spatial structure as reflected in map pattern (compare Figures 3a and 3b). Thus, 
ESF supports simulation experiments for which Y* can be determined with  
a pseudo-random number generator, and then added to the ESF, resulting in the 
spatial structure being held constant across simulation replications—the 
parametric mixture distribution specifies the geographic distribution of Y as 
being conditional on this map pattern. 

One challenge for spatial econometricians suggested by this spatial 
statistical conceptualization is the establishment of ESF properties vis-à-vis 
spatial autoregression model specifications. Another is to fully develop the 
mathematical statistical theory associated with ESFs. 

Figure 3. The geographic distribution of population density 

   
Notes: scale from light gray to black is proportional to density. Left (a): population/area. Middle (b). ESF. 

Right (c): Y*. 

Source: own calculations. 
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5. Explicating spatially structured random effects 

Random effects model specifications address samples for which 
observations are selected in a highly structured rather than random way. 
Frequently random effects can be estimated in one of two ways: employing 
repeated measures in a frequentist context, or employing priors in a Bayesian 
context. This first conceptualization directly links random effects to means of 
time series for individual locations. Because the random effects term is  
a constant through time, its spatial structure can be captured by an ESF. In turn, 
this ESF can be estimated with only one slice of time (i.e., a map for a specified 
point in time), as in the preceding section, revealing that an ESF model 
specification is able to uncover at least part of a random effects term without 
repeated measures. Priors in a Bayesian analysis also allow the estimation of  
a random effects term with only one slice of time. 

An average exists for each time series in a space-time dataset. This 
average ignores both spatial and serial correlation in the space-time series.  
A random effects model essentially works with these averages, adjusting them in 
accordance with the correlational structure latent in their parent space-time 
series, as well as their simultaneous estimation. The random effects model 
specification achieves this by fitting a distribution with a few parameters (e.g.,  
a mean and a variance for a bell-shaped curve), rather than n individual means 
(fixed effects) for the n locations. Consequently, a relationship exists between 
the time series means and the random effects. This random effects specification 
relates to a fixed effects specification that includes n indicator variables, each for 
a separate district specific local intercept (one local intercept is arbitrarily set to 
0 to eliminate perfect multicollinearity with the global mean).  

A challenge for spatial econometricians suggested by this spatial 
statistical analysis concerns a need to better understand the number of degrees of 
freedom associated with a random effects term. Another challenge is to better 
understand random effects terms in the presence of covariates. Given that 
estimation of the spatially structured part of a random effects term is possible 
with a single map, a third challenge is to investigate whether or not estimation of 
the spatially unstructured component of a random effects term can be simplified. 

6. Implications and conclusions 

Spatial statistics and spatial econometrics are kindred spirits in terms of 
empirical analysis methodologies. Problems and challenges faced by one of 
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these fields reveals parallel problems and challenges already faced, or to be 
faced, by the other field. Griffith and Paelinck (2011) present a number of 
contemporary non-standard sources and treatments of such problems and 
challenges. This paper builds on their work, extending and identifying other 
problems and challenges. No doubt the future will produce new problems and 
challenges, too. Paelinck (2012) points out that spatial econometrics seeks to 
obtain a better understanding of the workings of spatial economies. Similarly, 
spatial statistics seeks to obtain a better understanding of the workings of 
geographic landscapes, some of which constitute space economies. This paper 
crystallizes the following challenges for spatial econometricians suggested by 
contemporary spatial statistical work: (1) formulating efficient and effective 
spatial autoregressive implementations for massive georeferenced datasets;  
(2) determining the utility of the principal eigenvector of a geographic weights 
matrix for empirical analyses; (3) casting georeferenced data generating 
mechanisms in terms of parametric mixture models involving ESFs; and,  
(4) improving our understanding of spatially structured and unstructured random 
effects terms that may appear in spatial statistical/econometric model 
specifications. New insights about these issues offer the potential to improve 
both spatial statistical and spatial econometric work. 
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Streszczenie 
 

WYBRANE WYZWANIA STATYSTYKI PRZESTRZENNEJ DLA 
EKONOMETRYKÓW PRZESTRZENNYCH 

 

Artykuł prezentuje wybrane, niestandardowe statystyki przestrzenne oraz 
zagadnienia ekonometrii przestrzennej. Rozważania teoretyczne koncentrują się na 
wyzwaniach wynikających z autokorelacji przestrzennej, nawiązując do pojęć 
Gaussowskiej zmiennej losowej, topologicznych cech danych georeferencyjnych, 
wektorów własnych, filtrów przestrzennych, georeferencyjnych mechanizmów 
generowania danych oraz interpretacji efektów losowych. 


