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Abstract

In this paper we compare the accuracy of unemployment rates forecasts of
eight Central and Eastern European countries. The unobserved component
models and seasonal ARIMA models are used within a rolling short-term forecast
experiment as an out-of-sample test of forecast accuracy. We find that
unemployment rates present clear unconditional asymmetry in three out of eight
countries. Half the cases there is no difference between forecasting accuracy of
the methods used in the study. In the remaining, a proper specification of
seasonal ARIMA model allows to generate better forecasts than from unobserved
component models. The forecasting accuracy deteriorates in periods of rapid
upward and downward movement and improves in periods of gradual change in
the unemployment rates.
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1. Introduction

For more or less forty years autoregressive moving average (ARMA)
models have been used for modelling and forecasting a variety of economic time
series. The ARMA forecasting equation for a stationary time series is a linear
equation in which the predictors consist of lags of the dependent variable and lags
of the forecast errors. This approach has a certain feature: all shocks, coming either
from the cycle or from other sources, are included in model’s innovations.
Therefore, in the last years the unobserved component models have become a very
promising tool in forecasting different economic series. Structural time series
models (or unobserved component models, UC) are constructed in terms of
components, such as trend, seasonal and cycle, that have a direct interpretation
(Harvey 1989). In this paper we compare the forecasting performance of structural
time series models with seasonal autoregressive integrated moving average
(SARIMA) models. The latter may be perceived as a reduced form of the linear
unobserved component models. As Harvey (2006) points out one of the drawbacks of
ARIMA models in comparison to UC is that the former may not grasp some
sophisticated characteristics of a time series. In this study the issue is whether the
restrictions placed on the ARIMA models have an impact on forecasting accuracy of
unemployment rate series in several Central and Eastern European (CEE) countries.

A number of research papers have used time series models for forecasting
unemployment rates. These works are devoted either to single unemployment rate,
where clearly the most popular is the US unemployment rate (e.g. Montgomery et
al. 1998, Altissimo and Violante 2001, Caner and Hansen 2001, Proietti 2003,
Koop and Potter 1999) or a comparison of models used in forecasting
unemployment rates from different economies, eg. OECD countries (Skalin and
Terdsvirta 2002), US, UK, Canada, and Japan (Milas and Rothman 2005), G7
countries (Terésvirta et al. 2005) and the Baltic States (Bgdowska-Sojka 2015).

Many works are devoted to comparison of different models. Montgomery,
Zamowitz, Tsay and Tiao (1998) in a rolling forecasts experiment for the US quarterly
unemployment rates show that non-linear models performed better than the linear
ARMA model in terms of forecasting errors when the unemployment increased rapidly
but not elsewhere. Stock and Watson (1999) use a large data set of US macroeconomic
time series, including the monthly unemployment rate, and show that linear models
have better forecasting accuracy than nonlinear ones. Oppositely, Terdsvirta et al.
[2005] find that the nonlinear LSTAR model turns out to be better than the linear or
neural network models when modelling unemployment rates in G7 countries.

There is a strong evidence of the asymmetric behaviour of unemployment
rates: these rates tend to rise suddenly, but fall gradually. This phenomena is
strictly related to the state of the business cycle (Koop and Potter 1999, Belaire-
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Franch and Peirdé 2015). Proietti (2003) finds that linear models of the seasonally
adjusted US unemployment rate perform significantly better than nonlinear
models, but a nonlinear specification outperforms the selected linear model in
periods of slowly decreasing unemployment rate. Hamilton (2005) argue that
the different dynamics in recessions and expansions are to be modelled within the
time-varying approach.

The main purpose of this paper is to compare an accuracy of unemployment rate
forecasts obtained from different linear models, namely structural time series models
and SARIMA models. Our approach is much in the same spirit of Proietti (2003) as it
concentrates on the comparison of forecasting models on the basis of the short-term
forecasts. Our sample data consists of seasonally unadjusted monthly unemployment
rates of the eight CEE countries that joined European Union in 2004 in the so called
first-wave accession. These countries are: Czech Republic, Estonia, Hungary, Latvia,
Lithuania, Poland, Slovakia, and Slovenia. The forecasts of unemployment rates are
generated from the rolling forecasts experiment where seasonality effects are built
directly into the forecasting procedure. In order to compare forecasts from different
models, we use forecasting error measures and Diebold-Mariano statistic.

Our contribution is as follows: first, only in three out of eight countries
unemployment rates present signs of unconditional asymmetry. In case of Estonia,
Latvia and Lithuania for one month horizon the forecasting accuracy provided by the
unobserved component models is greater than for airline model, but not significantly
different from the AR(2) model. In Poland the greater forecasting accuracy is
provided by seasonal ARIMA models. In the remaining cases the forecasting
performance of seasonal ARIMA and UC models is not statistically different. In case
of twelve months horizon more parsimonious ARIMA models perform better or as
good as the unobserved component models. Second, when comparing models across
all countries in the sample, there are substantial differences between their forecasting
abilities; the lowest mean percentage forecasting error for 12-month horizon is 1.82%
in case of Slovakian unemployment rate and the highest is 8.67% for the Estonian
one. Third, we also examine if there are the differences of the unemployment rates’
forecasts accuracy at the time of increase and decrease in these rates. In case of
Estonian, Latvian and Slovenian unemployment rates shocks that increase
unemployment rate tend to have greater negative impact on the model’s forecasting
ability than shocks that lower unemployment rate. Finally, the forecasting accuracy
scores better in periods of gradual decrease or increase in unemployment rates and
deteriorates in the beginning of the periods of rapid increase or decrease in the series.

The plan of the paper is as follows. Next section describes the methodology
used in the study. The data are presented in Section 3, whereas the empirical results
of the comparison of forecasts are shown in Section 4. The conclusions are
presented in Section 5.
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2. Methodology

Our paper aims to compare forecasts from two alternative specifications
that are used to represent the dynamic properties of time series, namely
unobserved component models (UC) and seasonal ARIMA models. When the
disturbances are independent, identically distributed and Gaussian, an ARIMA
model with restrictions in the parameters is the reduced form of an unobserved
component model (Harvey 1989). There is one aggregated disturbance within the
specification of ARIMA models, whereas unobserved component models include
usually several component disturbances. Thus, the latter may allow to discover the
features, that are not observed in the reduced form of ARIMA model. In this paper we
try examine which of these two classes of the models is more appropriate when
forecasting the unemployment rates.

We forecast the unemployment rates with ARIMA models, with the general
specification for y,, ¥, ~ ARIMA(p,d,q), written as:

HL)A'y, =6, +O(L), (1)

where L is a lag operator, (L) =1-@L—...— ¢ L*
and (L)=1-6L—..—0 L.

Two specifications of ARIMA models are used in the study. As we model
the series that are unadjusted seasonally, we consider seasonal ARIMA models in
the following specifications:

I. Seasonal ARIMA(0,1,1)(0,1,1) — henceforth SARIMAT (airline model)
II. Seasonal ARIMA(2,1,0)(0,1,1) — henceforth SARIMA2 (AR(2) model).

In unobserved component models the general structural model is written as
(Harvey 1989):

YV, =4y, Y, te, g, ~NID(0, o) t=1,..,T (2)

where Y, represents the time series to be modelled and forecasted, (4, is the trend
component, ¥, is the seasonal component, ¥/, is the cyclical component, &,
represents the irregular component and NID denotes Normally and
Independently Distributed. All of these components are assumed to be
unobserved. Thus the simple specification of the local level model that consists of
a random walk plus noise,
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Vv, =4 +e, g, ~NID(0, ¢}) t=1,.,T

3)
M=+, n ~ NID(Oa O-j)

where the irregular and level disturbances, &, and 7, respectively, are mutually
independent, might be perceived as a reduced form of ARIMA(0,1,1) (Harvey 2006).

In the study we use two specifications of UC models:
III. Basic Structural Model (BSM)

Vi=H TV TE
M=+ B+, 1, ~ NID(0, 0;) “)
ﬁt :ﬂt—l +é/t é/z NNlD(Oa O-é)

where g, rtepresents the stochastic level of the trend and f, represents the

stochastic slope of the trend. It is also assumed that &,, 77, and ¢, are
independent variables. Additionally, p, is trigonometric seasonal component

described as:
s/2

V=270 (5)
j=1

with s standing for the number of seasons, s = 12 in our case. Each y,, is

Vi {cos A, sini, } Via| | @,
* = . A * + * b
yj,t —Ssm ﬂ’j cos /11‘ 7/‘,:—1 a)j,t (6)
J

i=1,.[s/2], t=1,..,T

generated by:

where A, =27 /s is the frequency and @ a);t, the seasonal disturbances,

Jit?

are mutually uncorrelated (@, , ~NID(0, O'i, ), a);t ~NID(0, Gif)) and

uncorrelated with ¢&, .

As the unemployment rate tends to move in a countercyclical way
(Montgomery et al. 1998), we expect that a cyclical component might improve
unemployment rates forecasts.
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Therefore we consider:
IV. Structural Model Plus Cycle (SMC)

V=M Y, TV, ES W= T,
In the SMC the statistical specification of a cycle, ¥/, , is defined by:

cosA, sinA K,
l//t* =p ) ¢ ‘ l//t*_] + t* R t=1,.T (7
v, —sinA, cosA, |y, K,

where: A, is the frequency (in radians), 0< A, <, p is a damping factor,
0< p<l1, k,, kx, are mutually uncorrelated white noise disturbances with zero
means and common variance denoted as (7,3.

We use out-of-sample forecasts to assess which model gives the better
accuracy. These forecasts are generated in a rolling forecasts window: for the
given origin the model is estimated and forecasts are generated. Next, this step is
repeated for each model and each series — hence we obtain 75 forecasts for each
series from one-step till twelve-step ahead. For all series we calculate different
forecasting errors, identify the models with the lowest errors and verify with
Diebold-Mariano test if the models have similar forecasts performance. We also
divide whole forecasts origin into periods of increases and decreases in
unemployment rates and examine if there are any differences between forecasting
errors in these two states.

3. Data

Our sample data consists of monthly unemployment rates from eight first-
wave accession Central and Eastern European countries that joined European
Union in May 2004. There are (in alphabetical order): Czech Republic (CZ),
Estonia (EE), Hungary (HU), Latvia (LA), Lithuania (LIT), Poland (PL), Slovenia
(SI) and Slovakia (SK). We consider logarithms of monthly seasonally unadjusted
series. The seasonality is included in the models: in the unobserved component
models seasonal component is modelled as a stochastic one.

The data source is CEIC database (www.ceic.com).The sample starts in
January 1999 and ends in March 2015 with some minor exceptions. The data for
Estonian unemployment rate starts in 2001, for Slovenia starts in 2000, and for
Slovakia in 2006 (in all cases the first month of the available data is January). In case
of the series that are available since January 1999 starting from that date each model
is estimated and forecasts from one month till twelve months are computed. The
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process is repeated until the end of sample is reached. In case of Estonian and
Slovenian unemployment rate the pre-forecasts period is extended until it reaches 108
observations and then the rolling window procedure is applied. The experiment
provides in total 75 forecasts for horizons from one-month to one-year for each model
and each series. For unemployment rate of Slovakia the data starts in 2006, therefore
the model is reestimated on the extended estimation window.

Figure 1 and Figure 2 show the unemployment rates of eight CEE countries
within the sample period. There is no single tendency for the unemployment rates
in the region at that time. The forecast origin consists of the period of increase in
the unemployment rates as well as the decrease. Starting from 2001 the
unemployment rates in the region are decreasing in all cases but one, Hungary. In
all time series but Slovenia unemployment rates increase sharply in the beginning
or the mid of 2008 and decrease since the mid of 2010. In the whole sample the
highest unemployment rate is observed in Poland in March 2003 and the lowest in
Estonia in December 2006.

Figure 1. Unemployment rates in Czech Republic, Estonia, Hungary and Latvia in 1999.01—
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CZ stands for Czech Republic, EE for Estonia, HU for Hungary, LA for Latvia.

Source: own calculations based on the data from www.ceic.com
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Figure 2. Unemployment rates in Lithuania, Poland, Slovenia and Slovakia within 1999.01—
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LIT stands for Lithuania, PL for Poland, SI for Slovenia and SK for Slovakia.

Source: own calculations based on the data from www.ceic.com. The graphics through the paper are
done in OxMetrics (Doornik and Hendry 2005).

A few unemployment rates display visible dynamic asymmetry in the series,
therefore to confirm this preliminary evidence, the unconditional symmetry of the
variations in the unemployment rates is formally examined with the test proposed
by Racine and Maasoumi (2007). We consider the increments of series corrected
for seasonal component estimated with basic structural model, BSM (eq. 4), within
the whole forecast period. Table 2 presents evidence against the null of symmetry in
the increments of seasonally adjusted unemployment rates: it is found for Estonian,
Latvian and Lithuanian unemployment rates. The hypothesis of symmetry in the
increments of the remaining unemployment rates cannot be rejected.

Table 1. The unconditional symmetry test

unemployment rates | CZ EE HU LA LIT PL SI SK
S'p 0.07 0.31 0.04 0.33 0.15 0.00 0.04 0.13
p-value (0.31) | (0.02) | (0.29) | (0.01) | (0.01) | (0.88) | (0.36) | (0.13)

Source: own calculations.

The values of §,0 statistics is calculated as of Maasoumi and Racine (2009),
for the increments of seasonally adjusted unemployment rates, together with p-values
in italics. Bolded values are statistically significant at « =0.05. The value of the
statistics are computed using 1,000 bootstrap replications (Hayfield, Racine 2008).
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4. Empirical results

This section consists of three parts: in the first a comparative performance
of a rolling forecast experiment is provided based on the out-of-sample test of
forecast accuracy. In the second, we compare the forecasts errors from the periods
of increase and decrease of the unemployment rate series. In the third step, the
errors are depicted together with the increments of the unemployment rates in
order to illustrate if and how the errors differ within the sample period.

We report comparative performance of the rolling forecasts in the models used
in the study. Table 2 presents the different forecasting errors for each series whereby:

)7Hl‘ , 1s the [-ahead forecast for a given model, the Mean Error (ME) is obtained as an
average of forecasts errors, y, —, e the Mean Square Forecast Error (MSFE) is

calculated as square root of averages of (, —)7H1‘ t)z , and the Mean Absolute

Percentage Error, MAPE, is obtained as an average of

yt_)N}Hl\t /y,*IOO%.

These errors are reported for 1-month and 1-year horizon.

As presented in Table 2 the forecasting errors differ substantially across the
countries, with the lowest value of Mean Absolute Percentage Error which is
0.3698 for one-month horizon in Poland and the highest value, three times larger
(1.1983) in Estonia. For twelve months horizon the lowest MAPE is observed in
Slovakia (1.8284) and the highest, almost five times larger, in Estonia (8.6889). The
important observation is that the Mean Square Forecast Error or Mean Absolute
Percentage Error both indicate the same model in a given horizon for a given
country to have the lowest forecasts errors, except LIT in twelve months horizon.
Mean Error indicates different models to have the lowest forecasts errors.

In order to examine if the forecasting precision differs significantly across
the methods used in the study, we employ modified Diebold-Mariano (henceforth
mDM) statistic for comparing predictive accuracy (Harvey et al. 1997). This
modified statistic is found to perform much better than the original Diebold-
Mariano test for different forecast horizons, as well as in cases when the forecast
errors are autocorrelated or have non-normal distribution. As our purpose is to
compare ARIMA models with UC models, we calculate mDM statistic in pairs, in
which forecast errors come from one of seasonal ARIMA models and the other
from one of UC component models. In table 3 we show the results of the mDM
test for each country and two forecasting horizons, one month and twelve months.
We reject the null of equal predictive accuracy at the 5% level.
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Based on the results of DM statistics presented in Table 3, with respect to
one month horizon in three out of four cases, Estonia, Latvia and Lithuania, with
respect to airline model (SARIMAIL) the greater forecasting accuracy is
provided by the unobserved component models — the asymmetric feature
observed in unemployment rates of the Baltic States is better picked up by BSM
or SMC model. With respect to SARIMA2 model that contains AR(2) part there
is no statistical difference between forecasting errors from either BSM or SMC.
In case of Poland the greater forecasting accuracy is provided by seasonal
ARIMA models. In the remaining four cases the predictive performance of these
two groups of models is similar. When twelve month forecasts horizon are
considered, in case of four unemployment rates from Czech Republic, Latvia,
Slovenia and Slovakia better accuracy is provided by one of seasonal ARIMA
models. For the remaining unemployment rates forecast errors are not
statistically different meaning that both approaches have similar forecasting
performance. The seasonal ARIMA models, although more parsimonious, seem
to outperform unobserved component models in the longer forecast horizon.

Table 3. Test for comparing predictive accuracy in one-month and 12-months forecasting

horizons
1 month horizon 12 months horizon
SARIMA1<BSM (0.011),
CzZ no difference SARIMA1+SMC (0.001)
SARIMA2—BSM (0.015)
BSM«+SARIMAL (0.001) .
EE SMC<—SARIMAL1 (0.001) no difference
HU no difference no difference
LA BSM«SARIMA1 (0.025) SARIMA2«+BSM (0.043)
SMC«—SARIMAL1 (0.021) SARIMA2—SMC (0.023)
BSM«SARIMAL (0.021) .
LIT SMCSARIMAI (0.003) no difference
SARIMA1<—SMC (0.031)
PL SARIMA2+—BSM (0.020) no difference
SARIMA2<—SMC (0.041)
SARIMA1<—BSM (0.014)
. SARIMA 1—SMC (0.017)
St no difference SARIMA2—BSM (0.031)
SARIMA2—SMC (0.041)
SARIMA —BSM (0.006)
SK no difference SARIMA2+—BSM (0.000)
SARIMA2—SMC (0.035)

Note: In the table the summary of the results of mDM test is presented (Hyndman and Khandakar 2008). CZ stands for
Czech Republic, EE for Estonia, HU for Hungary, LA for Latvia, LIT for Lithuania, PL for Poland, SI for Slovenia and
SK for Slovakia. “no difference” means that forecasts accuracy from ARIMA models and UC models is the same. The
direction of the arrow shows errors from which model are smaller, e.g. “SARIMA 1<—BSM” means that forecast errors
from BSM model are greater than forecast errors from SARIMA1 model. The numbers in italics are p-values of mDM
statistics in one-sided tests. If the p-values are bigger than 0.05, the results are not presented in the table.

Source: own calculations.
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In the next step we examine if forecasting performance differs in the time
of increase and decrease of the unemployment rates. Therefore we divide the
forecasting origin into two subsamples and calculated the means of forecasting
errors separately for increase/decrease case. Table 4 presents the results of #-test
of equality of two sample means (Snedecor and Cochran 1989). Table 4 presents
evidence against the null that forecasting errors are the same when increase and
decrease of unemployment rates is observed in case of Estonian, Latvian and
Slovenian unemployment rates. The hypothesis of equality of two sample means
of the remaining unemployment rates cannot be rejected.

Table 4. Two-sample z-test for equal means of errors in time of unemployment rates’
increase or decrease

CzZ EE HU LA LIT PL SI SK

1 month | -0.6726 | -3.0655 | 1.1359 | -2.4533 | -1.1712 | -1.6840 | -3.3242 | -0.4870

12 months | -1.8739 | -4.8674 | 0.7862 | -2.9217 | -1.7194 | 0.2594 | -1.4220 | -0.2920

Source: own calculations.

This table presents statistics of two-sample #-test. The alternative hypothesis
states that the mean forecasting errors in time of increase of unemployment rates is
different from the mean in the time of decrease of unemployment rate. Bolded
values are statistically significant at significance level a = 0.05. The statistics are
presented for seasonal ARIMA(2,1,0)(0,1,1) model and MAPE errors, however
the results of the statistical interference are the same for other models as well as
for ME or MSFE.

According to the results presented in Table 4, in case of one-month
forecasts of unemployment rates in Estonia, Latvia and Slovenia, errors
coming from the forecasts generated for the time of increase in unemployment
rates that might correspond to cyclical contractions, are systematically higher
than errors obtained in case of decrease in unemployment rates usually
observed in the time of expansions (Belaire-Franch and Peiré 2015). This
result holds also for Estonian and Latvian 12-month forecasts. It suggests that
in case of those three countries the effect of cyclical contractions in terms of
weakening forecasting accuracy is much stronger than that of expansions. In
the remaining cases the forecast errors are not statistically different.
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Figure 3. Unemployment rate increments and one month MAPE within forecast period
2008.01-2014.03
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CZ stands for Czech Republic, EE for Estonia, HU for Hungary, LA for Latvia.
Source: own calculations based on the data from www.ceic.com

Figure 3 and 4 show the increments in the unemployment rates together
with the forecast errors. Because in case of forecasts for one month horizon the
errors from SARIMA2 model are not statistically different from any errors
from UC model, we compare one-step ahead Mean Absolute Percentage Error
from this model in 75 consecutive periods together with the increments of the
seasonally adjusted unemployment rate series (the latter is obtained again from
BSM model). The most extreme values of increments of seasonally adjusted
unemployment rates are positive. The highest value of MAPE is observed in
periods of rapid increase (e.g. in case of Estonia, Hungary, Latvia, Lithuania,
Poland or Slovenia from 2008 to 2009, Latvia in the late 2012) or rapid
decrease (e.g Czech Republic in 2013, Hungary in the middle of 2013,
Lithuania in 2013). In fact, forecasting accuracy scores better in periods of
gradual decrease or increase in unemployment rates and deteriorates in the
beginning of the periods of rapid increase or decrease in the series. This can be
visually assessed by observing relatively calm period starting in 2010 and
lasting for at least two years. Similar phenomenon, although not presented
here, characterizes this relationship for multistep forecasts.
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Figure 4. Unemployment rate increments and one month MAPE within forecast period
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LIT stands for Lithuania, PL for Poland, SI for Slovenia and SK for Slovakia.

Source: own calculations based on the data from www.ceic.com

5. Conclusion

In this paper we have examined the out-of-sample performance of two
alternative specifications that are used to represent the dynamic properties of time
series, seasonal ARIMA and unobserved component models. We present the results
of an empirical exercise with forecasts for unemployment rates of eight CEE
countries that have accessed European Union in May 2004. As the main interest is to
select the best forecasting models according to their post-sample performance, we
have used rolling forecasts experiment and examine, which model generates better
forecasts. Starting in January 1999 and ending in March 2015 our sample consists of
the periods of dynamic changes in the unemployment rates.

We find that for the monthly horizon in case of Czech Republic,
Hungary, Slovenia and Slovakia there is no difference between forecasting
accuracy of the methods used in the study. In the remaining countries in three
out of four cases forecast errors from unobserved component models are
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significantly lower than from one of the SARIMA model (the airline model), but
no statistical difference is found when the forecasts errors from the AR(2) model
are considered. For twelve months horizon in case of Estonia, Hungary,
Lithuania and Poland both, seasonal ARIMA and unobserved component
models, generate similar forecast errors. In the remaining cases seasonal
ARIMA model generate forecasts with significantly lower errors. It means that
in our sample parsimonious and well-fitted specification of SARIMA model
may give as good forecasts as the unobserved component models or even better.

Altogether the forecasting ability across examined series differs
substantially, with mean average percentage error MAPE ranging from 0.37 to 1.2
in case of one month horizon and from 1.8 to 8.7 in case of twelve month horizon.
When sample is divided into periods of increase and decrease of the
unemployment rates, mean forecasting errors are significantly different only in
three countries: Estonia, Latvia and Slovenia, where forecasting errors generated
for the time of increase in unemployment rates are systematically higher than
errors obtained in case of decrease. Last but not least, we find graphical evidence
that the forecasting accuracy deteriorates in periods of rapid upward and
downward movement and improves in periods of gradual change in the
unemployment rates.
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Streszczenie

PROGNOZOWANIE STOP BEZROBOCIA - POROWNANIE
MODELI SARIMA 1 MODELI NIEOBSERWOWANYCH
KOMPONENTOW DLA WYBRANYCH KRAJOW
EUROPY SRODKOWEJ I WSCHODNIEJ

W artykule porownano prognozy wskaznikow stop bezrobocia w osmiu krajach
Europy Srodkowej i Wschodniej. Zastosowano modele nieobserwowanych komponentéw
i sezonowe modele ARIMA w przesuwanym oknie i postawiono prognozy
krotkoterminowe weryfikowane na podstawie trafnosci prognozy spoza proby. Wykazano,
ze w przypadku trzech krajow stopa bezrobocia charakteryzuje sie bezwarunkowq
asymetriq. Generalnie w przypadku stosowanych metod, dla potowy badanych szeregow
nie znaleziono statystycznie istotnej roznicy w dokladnosci stawianych prognoz.
W pozostatych przypadkach odpowiednio dobrany sezonowy model ARIMA pozwalal na
postawienie lepszych prognoz. Ponadto wykazano, Ze trafnos¢ prognoz pogarsza sie
w okresach gwattownych wzrostow i spadkow stop bezrobocia, a poprawia sie w okresach
nieznacznych zmian wielkosci tego wskaznika.

Stowa kluczowe: stopa bezrobocia, modele nieobserwowanych komponentow, modele
SARIMA, trafnos¢ prognoz
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